Experimental and Analytical Study on DC Breakdown Characteristics of Butt Gap Condition in \hbox/\hbox Composite System
Due to ac loss in superconducting materials, high cryogenic costs are inevitable when superconducting devices are operated in ac power networks. Thus, dc electric power networks would be regarded as a better choice for the operation of superconducting devices. In order to develop superconducting dev...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.5401604-5401604 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to ac loss in superconducting materials, high cryogenic costs are inevitable when superconducting devices are operated in ac power networks. Thus, dc electric power networks would be regarded as a better choice for the operation of superconducting devices. In order to develop superconducting devices for a dc network, the dc insulation characteristics, which are much different from the ac insulation characteristics, should be clarified. In this paper, in order to investigate the dc insulation characteristics of polypropylene laminated paper (PPLP), which is generally used for dc superconducting cable, a dc breakdown test and a dc electric field analysis were performed. For the dc breakdown test, specimens with three layers of PPLP with one butt gap were fabricated. In order to reveal the breakdown characteristic of PPLP, a dc electric fields calculation in the media at the moment of breakdown was performed considering capacitive and resistive field distributions. Consequently, the capacitive electric field and resistive electric field distributions were determined using dc field analysis techniques and it was found that the butt gap edge is affected enough by the high field strength to cause the breakdown. Furthermore, it was deduced that the butt gap edge acted as a triple-junction point which causes the breakdown. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2013.2238593 |