Experimental and Analytical Study on DC Breakdown Characteristics of Butt Gap Condition in \hbox/\hbox Composite System

Due to ac loss in superconducting materials, high cryogenic costs are inevitable when superconducting devices are operated in ac power networks. Thus, dc electric power networks would be regarded as a better choice for the operation of superconducting devices. In order to develop superconducting dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.5401604-5401604
Hauptverfasser: Jae-Kyu Seong, Won Choi, Woo-Ju Shin, Jae-Sang Hwang, Bang-Wook Lee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to ac loss in superconducting materials, high cryogenic costs are inevitable when superconducting devices are operated in ac power networks. Thus, dc electric power networks would be regarded as a better choice for the operation of superconducting devices. In order to develop superconducting devices for a dc network, the dc insulation characteristics, which are much different from the ac insulation characteristics, should be clarified. In this paper, in order to investigate the dc insulation characteristics of polypropylene laminated paper (PPLP), which is generally used for dc superconducting cable, a dc breakdown test and a dc electric field analysis were performed. For the dc breakdown test, specimens with three layers of PPLP with one butt gap were fabricated. In order to reveal the breakdown characteristic of PPLP, a dc electric fields calculation in the media at the moment of breakdown was performed considering capacitive and resistive field distributions. Consequently, the capacitive electric field and resistive electric field distributions were determined using dc field analysis techniques and it was found that the butt gap edge is affected enough by the high field strength to cause the breakdown. Furthermore, it was deduced that the butt gap edge acted as a triple-junction point which causes the breakdown.
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2013.2238593