Epidemic Trust-Based Recommender Systems

Collaborative filtering(CF) recommender systems are among the most popular approaches to solving the information overload problem in social networks by generating accurate predictions based on the ratings of similar users. Traditional CF recommenders suffer from lack of scalability while decentraliz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Magureanu, S., Dokoohaki, N., Mokarizadeh, S., Matskin, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Collaborative filtering(CF) recommender systems are among the most popular approaches to solving the information overload problem in social networks by generating accurate predictions based on the ratings of similar users. Traditional CF recommenders suffer from lack of scalability while decentralized CF recommenders (DHT-based, Gossip-based etc.) have promised to alleviate this problem. Thus, in this paper we propose a decentralized approach to CF recommender systems that uses the T-Man algorithm to create and maintain an overlay network that in turn would facilitate the generation of recommendations based on local information of a node. We analyse the influence of the number of rounds and neighbors on the accuracy of prediction and item coverage and we propose a new approach to inferring trust values between a user and its neighbors. Our experiment son two datasets show an improvement of prediction accuracy relative to previous approaches while using a highly scalable, decentralized paradigm. We also analyse item coverage and show that our system is able to generate predictions for significant fraction of the users, which is comparable with the centralized approaches.
DOI:10.1109/SocialCom-PASSAT.2012.94