The US IOOS Coastal and Ocean Modeling Testbed for advancing research to applications

Coastal waters and lowlands of the U.S. are threatened by climate change, sea-level rise, flooding, oxygen depleted "dead zones", oil spills and unforeseen disasters. With funding from U.S. Integrated Ocean Observing System (IOOS®), the Southeast University Research Association (SURA) faci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Howlett, E., Wilcox, K., Crosby, A., Bird, A., Graves, S., Maskey, M., Keiser, K., Luettich, R., Signell, R., Smith, L., Wright, D., Hanson, J., Baltes, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coastal waters and lowlands of the U.S. are threatened by climate change, sea-level rise, flooding, oxygen depleted "dead zones", oil spills and unforeseen disasters. With funding from U.S. Integrated Ocean Observing System (IOOS®), the Southeast University Research Association (SURA) facilitated strong and strategic collaborations among experts from academia, federal operational centers and industry and guided the U.S. IOOS Coastal and Ocean Modeling Testbed (COMT) through its successful pilot phase. The focus of this paper is the development of the cyberinfrastructure, including successes and challenges during this pilot phase of the COMT. This is the first testbed intended to serve multiple federal agencies and be focused on the coastal ocean and Great Lakes. National Oceanic and Atmospheric Administration's (NOAA) National Center for Environmental Prediction (NCEP) has offered an operational base for the COMT, which addresses NCEP modeling challenges in coastal predictions by enabling the transition of research improvements into NCEP's operational forecast capability. Additional Federal participants include Navy, U.S. Geological Survey (USGS), Environmental Protection Agency and the U.S. Army Corps of Engineers (USACE). The mission of the Coastal and Ocean Modeling Testbed (COMT) is to use targeted research and development to accelerate the transition of scientific and technical advances from the coastal and ocean modeling research community to improve identified operational ocean products and services (i.e. via research to applications and also applications to research). The vision of the program is to enhance the accuracy, reliability, and scope of the federal suite of operational ocean modeling products, while ensuring its user community is better equipped to solve challenging coastal problems and recognize the COMT to be where the best coastal science is operationalized. Since its initiation in June, 2010, the COMT has developed to include a flexible and extensible community research framework to test and evaluate predictive models to address key coastal environmental issues. Initially, the COMT addressed three general research challenges of socioeconomic relevance: estuarine hypoxia, shelf hypoxia, and coastal inundation. A cyberinfrastructure was developed to facilitate model assessment based on community standards, including a distributed data repository, automated cataloging mechanism, quick browse facility, and tools for flexible and detailed
ISSN:0197-7385
DOI:10.1109/OCEANS.2012.6404967