Biaxial + uniaxial stress effectiveness in tri-gate SOI nMOSFETs with variable fin dimensions

MuGFET devices show good gate-to-channel control, reducing short channel effects and increased current drive and their performance can be improved through implementation of mechanical stress in the silicon fin. In th is work we study the stress distribution and transconductance behavior in unstraine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Buhler, R. T., Agopian, P. G. D., Simoen, E., Claeys, C., Martino, J. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MuGFET devices show good gate-to-channel control, reducing short channel effects and increased current drive and their performance can be improved through implementation of mechanical stress in the silicon fin. In th is work we study the stress distribution and transconductance behavior in unstrained and biaxially + uniaxially strained tri-gate SOI nMOSFETs with different fin dimensions through electrical characterization of experimental devices and 3D process and device numerical simulation. Experimental results of standard and strained devices were used to validate the simulations. The bi+uni stress technique delivered enhanced maximum transconductance.
ISSN:1078-621X
2577-2295
DOI:10.1109/SOI.2012.6404375