Feature Processing and Modeling for 6D Motion Gesture Recognition

A 6D motion gesture is represented by a 3D spatial trajectory and augmented by another three dimensions of orientation. Using different tracking technologies, the motion can be tracked explicitly with the position and orientation or implicitly with the acceleration and angular speed. In this work, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2013-04, Vol.15 (3), p.561-571
Hauptverfasser: Mingyu Chen, AlRegib, G., Biing-Hwang Juang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A 6D motion gesture is represented by a 3D spatial trajectory and augmented by another three dimensions of orientation. Using different tracking technologies, the motion can be tracked explicitly with the position and orientation or implicitly with the acceleration and angular speed. In this work, we address the problem of motion gesture recognition for command-and-control applications. Our main contribution is to investigate the relative effectiveness of various feature dimensions for motion gesture recognition in both user-dependent and user-independent cases. We introduce a statistical feature-based classifier as the baseline and propose an HMM-based recognizer, which offers more flexibility in feature selection and achieves better performance in recognition accuracy than the baseline system. Our motion gesture database which contains both explicit and implicit motion information allows us to compare the recognition performance of different tracking signals on a common ground. This study also gives an insight into the attainable recognition rate with different tracking devices, which is valuable for the system designer to choose the proper tracking technology.
ISSN:1520-9210
1941-0077
DOI:10.1109/TMM.2012.2237024