A multistage optimization method based on WALKSAT and clustering for the hard MAX-SAT problems
It is widely recognized that WALKSAT is the one of the most effective local search algorithm for the satisfiability (SAT) and maximum satisfiability (MAX-SAT) problems. Inspired by the idea of population learning the large-scale structure of the landscape, this paper presents a multistage optimizati...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is widely recognized that WALKSAT is the one of the most effective local search algorithm for the satisfiability (SAT) and maximum satisfiability (MAX-SAT) problems. Inspired by the idea of population learning the large-scale structure of the landscape, this paper presents a multistage optimization method called MS-WALKSAT, which is based on WALKSAT and clustering. The experimental results on a variety of large and hard MAX-SAT problem instances have shown the MS-WALKSAT provides better performance than most of the reported algorithms. |
---|---|
ISSN: | 1934-1768 2161-2927 |