Detent force reduction of a tubular linear drive by using a genetic algorithm and FEM - verification of simulation results

In order to meet industrial safety standards in eccentric presses, the detent force caused by the reluctance change between permanent magnet (PM) and stator teeth of the acting high force tubular permanent magnet linear synchronous machines (PMLSM) should be reduced. The detent force is generated by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gruber, S., Wegener, R., Soter, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to meet industrial safety standards in eccentric presses, the detent force caused by the reluctance change between permanent magnet (PM) and stator teeth of the acting high force tubular permanent magnet linear synchronous machines (PMLSM) should be reduced. The detent force is generated by two components: the slot effect which is already decreased by the closing slot technique and proven in [3] and the end effect which will be optimized by using auxiliary poles at the end of the machine. Therefore a special genetic algorithm (GA) is developed which rates the simulation results of the FEM and produces new auxiliary poles. The combined simulation tries to find an optimal size and position for auxiliary poles to reduce the whole detent force. The numerical calculations propose a minimized detent force caused by the located poles, which is independent from the length of the machines (1 to 5 modules). The result will be proven by measurements.
ISSN:1553-572X
DOI:10.1109/IECON.2012.6388713