Broadband Millimeter-Wave Propagation Measurements and Models Using Adaptive-Beam Antennas for Outdoor Urban Cellular Communications

The spectrum crunch currently experienced by mobile cellular carriers makes the underutilized millimeter-wave frequency spectrum a sensible choice for next-generation cellular communications, particularly when considering the recent advances in low cost sub-terahertz/millimeter-wave complementary me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2013-04, Vol.61 (4), p.1850-1859
Hauptverfasser: Rappaport, Theodore S., Gutierrez, Felix, Ben-Dor, Eshar, Murdock, James N., Qiao, Yijun, Tamir, Jonathan I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The spectrum crunch currently experienced by mobile cellular carriers makes the underutilized millimeter-wave frequency spectrum a sensible choice for next-generation cellular communications, particularly when considering the recent advances in low cost sub-terahertz/millimeter-wave complementary metal-oxide semiconductor circuitry. To date, however, little is known on how to design or deploy practical millimeter-wave cellular systems. In this paper, measurements for outdoor cellular channels at 38 GHz were made in an urban environment with a broadband (800-MHz RF passband bandwidth) sliding correlator channel sounder. Extensive angle of arrival, path loss, and multipath time delay spread measurements were conducted for steerable beam antennas of differing gains and beamwidths for a wide variety of transmitter and receiver locations. Coverage outages and the likelihood of outage with steerable antennas were also measured to determine how random receiver locations with differing antenna gains and link budgets could perform in future cellular systems. This paper provides measurements and models that may be used to design future fifth-generation millimeter-wave cellular networks and gives insight into antenna beam steering algorithms for these systems.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2012.2235056