Iterative learning of feed-forward corrections for high-performance tracking

We revisit a recently developed iterative learning algorithm that enables systems to learn from a repeated operation with the goal of achieving high tracking performance of a given trajectory. The learning scheme is based on a coarse dynamics model of the system and uses past measurements to iterati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mueller, F. L., Schoellig, A. P., D'Andrea, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We revisit a recently developed iterative learning algorithm that enables systems to learn from a repeated operation with the goal of achieving high tracking performance of a given trajectory. The learning scheme is based on a coarse dynamics model of the system and uses past measurements to iteratively adapt the feed-forward input signal to the system. The novelty of this work is an identification routine that uses a numerical simulation of the system dynamics to extract the required model information. This allows the learning algorithm to be applied to any dynamic system for which a dynamics simulation is available (including systems with underlying feedback loops). The proposed learning algorithm is applied to a quadrocopter system that is guided by a trajectory-following controller. With the identification routine, we are able to extend our previous learning results to three-dimensional quadrocopter motions and achieve significantly higher tracking accuracy due to the underlying feedback control, which accounts for non-repetitive noise.
ISSN:2153-0858
2153-0866
DOI:10.1109/IROS.2012.6385647