Embedded way prediction for last-level caches
This paper investigates Embedded Way Prediction for large last-level caches (LLCs): an architecture and circuit design to provide the latency of parallel tag-data access at substantial energy savings. Existing way prediction approaches for L1 caches are compromised by the high associativity and filt...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigates Embedded Way Prediction for large last-level caches (LLCs): an architecture and circuit design to provide the latency of parallel tag-data access at substantial energy savings. Existing way prediction approaches for L1 caches are compromised by the high associativity and filtered temporal locality of LLCs. We demonstrate: (1) the need for wide partial tag comparison, which we implement with a dynamic CAM alongside the data sub-array wordline decode, and (2) the inhibit bit, an architectural innovation to provide accurate predictions when the partial tag comparison is inconclusive. We present circuit critical-path and architectural power/performance studies demonstrating speedups of up to 15.4% (6.6% average) for scientific and server applications, matching the performance of parallel tag-data access while reducing energy overhead by 40%. |
---|---|
ISSN: | 1063-6404 2576-6996 |
DOI: | 10.1109/ICCD.2012.6378636 |