An empirical study on influence of approximation approaches on enhancing fireworks algorithm

This paper presents an empirical study on the influence of approximation approaches on accelerating the fireworks algorithm search by elite strategy. In this study, we use three sampling data methods to approximate fitness landscape, i.e. the best fitness sampling method, the sampling distance near...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yan Pei, Shaoqiu Zheng, Ying Tan, Takagi, Hideyuki
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an empirical study on the influence of approximation approaches on accelerating the fireworks algorithm search by elite strategy. In this study, we use three sampling data methods to approximate fitness landscape, i.e. the best fitness sampling method, the sampling distance near the best fitness individual sampling method and the random sampling method. For each approximation methods, we conduct a series of combinative evaluations with the different sampling method and sampling number for accelerating fireworks algorithm. The experimental evaluations on benchmark functions show that this elite strategy can enhance the fireworks algorithm search capability effectively. We also analyze and discuss the related issues on the influence of approximation model, sampling method, and sampling number on the fireworks algorithm acceleration performance.
ISSN:1062-922X
2577-1655
DOI:10.1109/ICSMC.2012.6377916