A two-stage equipment predictive maintenance framework for high-performance manufacturing systems
It has been a long interest from researchers to have an effective approach optimizing maintenance scheduling due to the large budgetary item factories spent on equipment maintenance. Since nowadays large scale of machinery log data is already collected and maintained in most manufacturing plants, it...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1348 |
---|---|
container_issue | |
container_start_page | 1343 |
container_title | |
container_volume | |
creator | Bin Hu Chee Khiang Pang Ming Luo Xiang Li Hian Leng Chan |
description | It has been a long interest from researchers to have an effective approach optimizing maintenance scheduling due to the large budgetary item factories spent on equipment maintenance. Since nowadays large scale of machinery log data is already collected and maintained in most manufacturing plants, it is feasible to extract useful information from this database and predict equipment failure utilizing intelligent and statistical techniques. In order to cope with the high complexity raised in predicting equipment failure, a two-stage equipment predictive maintenance framework based on a systematic integration of biological inspired algorithms and statistical analysis considering each advantages and disadvantages has been proposed and developed. Evaluation and development of the genetic algorithm, neural network, and multiple regression forecasting components in this framework for predicting equipment failure is presented. Through the case study on a wafer fabrication plant in a semiconductor company, the feasibility and effectiveness of the proposed system is demonstrated. |
doi_str_mv | 10.1109/ICIEA.2012.6360931 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6360931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6360931</ieee_id><sourcerecordid>6360931</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-78e26bf04f6ff85cfe12d6c1782fdefe44c656270a549100c810df138315c9113</originalsourceid><addsrcrecordid>eNo1kE1PAjEYhOtXIiJ_QC_9A8W-7W4_joSgkpB44eCN1O5bqLrL2hYJ_16COoeZSZ5kDkPIHfAxALcP8-l8NhkLDmKspOJWwhkZWW2gqrUWANaek4GA2jAhrL4gN__AvF6egGJCgrkmo5zf-VEGjDRqQNyElv2W5eLWSPFrF_sWu0L7hE30JX4jbV3sCnau80hDci3ut-mDhm2im7jesB7TsbcnfPRdcL7sUuzWNB9ywTbfkqvgPjOO_nJIlo-z5fSZLV6e5tPJgkXLC9MGhXoLvAoqBFP7gCAa5UEbERoMWFVe1Upo7urKAufeAG8CSCOh9hZADsn972xExFWfYuvSYfV3lvwBkEVbbg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A two-stage equipment predictive maintenance framework for high-performance manufacturing systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bin Hu ; Chee Khiang Pang ; Ming Luo ; Xiang Li ; Hian Leng Chan</creator><creatorcontrib>Bin Hu ; Chee Khiang Pang ; Ming Luo ; Xiang Li ; Hian Leng Chan</creatorcontrib><description>It has been a long interest from researchers to have an effective approach optimizing maintenance scheduling due to the large budgetary item factories spent on equipment maintenance. Since nowadays large scale of machinery log data is already collected and maintained in most manufacturing plants, it is feasible to extract useful information from this database and predict equipment failure utilizing intelligent and statistical techniques. In order to cope with the high complexity raised in predicting equipment failure, a two-stage equipment predictive maintenance framework based on a systematic integration of biological inspired algorithms and statistical analysis considering each advantages and disadvantages has been proposed and developed. Evaluation and development of the genetic algorithm, neural network, and multiple regression forecasting components in this framework for predicting equipment failure is presented. Through the case study on a wafer fabrication plant in a semiconductor company, the feasibility and effectiveness of the proposed system is demonstrated.</description><identifier>ISSN: 2156-2318</identifier><identifier>ISBN: 145772118X</identifier><identifier>ISBN: 9781457721182</identifier><identifier>EISSN: 2158-2297</identifier><identifier>EISBN: 9781457721199</identifier><identifier>EISBN: 9781457721175</identifier><identifier>EISBN: 1457721198</identifier><identifier>EISBN: 1457721171</identifier><identifier>DOI: 10.1109/ICIEA.2012.6360931</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Correlation ; Forecasting ; Genetic algorithm ; Inspection ; Maintenance engineering ; manufacturing systems ; neural networks ; Prediction algorithms ; predictive maintenance ; Production</subject><ispartof>2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2012, p.1343-1348</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6360931$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6360931$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bin Hu</creatorcontrib><creatorcontrib>Chee Khiang Pang</creatorcontrib><creatorcontrib>Ming Luo</creatorcontrib><creatorcontrib>Xiang Li</creatorcontrib><creatorcontrib>Hian Leng Chan</creatorcontrib><title>A two-stage equipment predictive maintenance framework for high-performance manufacturing systems</title><title>2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)</title><addtitle>ICIEA</addtitle><description>It has been a long interest from researchers to have an effective approach optimizing maintenance scheduling due to the large budgetary item factories spent on equipment maintenance. Since nowadays large scale of machinery log data is already collected and maintained in most manufacturing plants, it is feasible to extract useful information from this database and predict equipment failure utilizing intelligent and statistical techniques. In order to cope with the high complexity raised in predicting equipment failure, a two-stage equipment predictive maintenance framework based on a systematic integration of biological inspired algorithms and statistical analysis considering each advantages and disadvantages has been proposed and developed. Evaluation and development of the genetic algorithm, neural network, and multiple regression forecasting components in this framework for predicting equipment failure is presented. Through the case study on a wafer fabrication plant in a semiconductor company, the feasibility and effectiveness of the proposed system is demonstrated.</description><subject>Accuracy</subject><subject>Correlation</subject><subject>Forecasting</subject><subject>Genetic algorithm</subject><subject>Inspection</subject><subject>Maintenance engineering</subject><subject>manufacturing systems</subject><subject>neural networks</subject><subject>Prediction algorithms</subject><subject>predictive maintenance</subject><subject>Production</subject><issn>2156-2318</issn><issn>2158-2297</issn><isbn>145772118X</isbn><isbn>9781457721182</isbn><isbn>9781457721199</isbn><isbn>9781457721175</isbn><isbn>1457721198</isbn><isbn>1457721171</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE1PAjEYhOtXIiJ_QC_9A8W-7W4_joSgkpB44eCN1O5bqLrL2hYJ_16COoeZSZ5kDkPIHfAxALcP8-l8NhkLDmKspOJWwhkZWW2gqrUWANaek4GA2jAhrL4gN__AvF6egGJCgrkmo5zf-VEGjDRqQNyElv2W5eLWSPFrF_sWu0L7hE30JX4jbV3sCnau80hDci3ut-mDhm2im7jesB7TsbcnfPRdcL7sUuzWNB9ywTbfkqvgPjOO_nJIlo-z5fSZLV6e5tPJgkXLC9MGhXoLvAoqBFP7gCAa5UEbERoMWFVe1Upo7urKAufeAG8CSCOh9hZADsn972xExFWfYuvSYfV3lvwBkEVbbg</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Bin Hu</creator><creator>Chee Khiang Pang</creator><creator>Ming Luo</creator><creator>Xiang Li</creator><creator>Hian Leng Chan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>A two-stage equipment predictive maintenance framework for high-performance manufacturing systems</title><author>Bin Hu ; Chee Khiang Pang ; Ming Luo ; Xiang Li ; Hian Leng Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-78e26bf04f6ff85cfe12d6c1782fdefe44c656270a549100c810df138315c9113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Correlation</topic><topic>Forecasting</topic><topic>Genetic algorithm</topic><topic>Inspection</topic><topic>Maintenance engineering</topic><topic>manufacturing systems</topic><topic>neural networks</topic><topic>Prediction algorithms</topic><topic>predictive maintenance</topic><topic>Production</topic><toplevel>online_resources</toplevel><creatorcontrib>Bin Hu</creatorcontrib><creatorcontrib>Chee Khiang Pang</creatorcontrib><creatorcontrib>Ming Luo</creatorcontrib><creatorcontrib>Xiang Li</creatorcontrib><creatorcontrib>Hian Leng Chan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bin Hu</au><au>Chee Khiang Pang</au><au>Ming Luo</au><au>Xiang Li</au><au>Hian Leng Chan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A two-stage equipment predictive maintenance framework for high-performance manufacturing systems</atitle><btitle>2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)</btitle><stitle>ICIEA</stitle><date>2012-07</date><risdate>2012</risdate><spage>1343</spage><epage>1348</epage><pages>1343-1348</pages><issn>2156-2318</issn><eissn>2158-2297</eissn><isbn>145772118X</isbn><isbn>9781457721182</isbn><eisbn>9781457721199</eisbn><eisbn>9781457721175</eisbn><eisbn>1457721198</eisbn><eisbn>1457721171</eisbn><abstract>It has been a long interest from researchers to have an effective approach optimizing maintenance scheduling due to the large budgetary item factories spent on equipment maintenance. Since nowadays large scale of machinery log data is already collected and maintained in most manufacturing plants, it is feasible to extract useful information from this database and predict equipment failure utilizing intelligent and statistical techniques. In order to cope with the high complexity raised in predicting equipment failure, a two-stage equipment predictive maintenance framework based on a systematic integration of biological inspired algorithms and statistical analysis considering each advantages and disadvantages has been proposed and developed. Evaluation and development of the genetic algorithm, neural network, and multiple regression forecasting components in this framework for predicting equipment failure is presented. Through the case study on a wafer fabrication plant in a semiconductor company, the feasibility and effectiveness of the proposed system is demonstrated.</abstract><pub>IEEE</pub><doi>10.1109/ICIEA.2012.6360931</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-2318 |
ispartof | 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2012, p.1343-1348 |
issn | 2156-2318 2158-2297 |
language | eng |
recordid | cdi_ieee_primary_6360931 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Correlation Forecasting Genetic algorithm Inspection Maintenance engineering manufacturing systems neural networks Prediction algorithms predictive maintenance Production |
title | A two-stage equipment predictive maintenance framework for high-performance manufacturing systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20two-stage%20equipment%20predictive%20maintenance%20framework%20for%20high-performance%20manufacturing%20systems&rft.btitle=2012%207th%20IEEE%20Conference%20on%20Industrial%20Electronics%20and%20Applications%20(ICIEA)&rft.au=Bin%20Hu&rft.date=2012-07&rft.spage=1343&rft.epage=1348&rft.pages=1343-1348&rft.issn=2156-2318&rft.eissn=2158-2297&rft.isbn=145772118X&rft.isbn_list=9781457721182&rft_id=info:doi/10.1109/ICIEA.2012.6360931&rft_dat=%3Cieee_6IE%3E6360931%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457721199&rft.eisbn_list=9781457721175&rft.eisbn_list=1457721198&rft.eisbn_list=1457721171&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6360931&rfr_iscdi=true |