A two-stage equipment predictive maintenance framework for high-performance manufacturing systems

It has been a long interest from researchers to have an effective approach optimizing maintenance scheduling due to the large budgetary item factories spent on equipment maintenance. Since nowadays large scale of machinery log data is already collected and maintained in most manufacturing plants, it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bin Hu, Chee Khiang Pang, Ming Luo, Xiang Li, Hian Leng Chan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1348
container_issue
container_start_page 1343
container_title
container_volume
creator Bin Hu
Chee Khiang Pang
Ming Luo
Xiang Li
Hian Leng Chan
description It has been a long interest from researchers to have an effective approach optimizing maintenance scheduling due to the large budgetary item factories spent on equipment maintenance. Since nowadays large scale of machinery log data is already collected and maintained in most manufacturing plants, it is feasible to extract useful information from this database and predict equipment failure utilizing intelligent and statistical techniques. In order to cope with the high complexity raised in predicting equipment failure, a two-stage equipment predictive maintenance framework based on a systematic integration of biological inspired algorithms and statistical analysis considering each advantages and disadvantages has been proposed and developed. Evaluation and development of the genetic algorithm, neural network, and multiple regression forecasting components in this framework for predicting equipment failure is presented. Through the case study on a wafer fabrication plant in a semiconductor company, the feasibility and effectiveness of the proposed system is demonstrated.
doi_str_mv 10.1109/ICIEA.2012.6360931
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6360931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6360931</ieee_id><sourcerecordid>6360931</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-78e26bf04f6ff85cfe12d6c1782fdefe44c656270a549100c810df138315c9113</originalsourceid><addsrcrecordid>eNo1kE1PAjEYhOtXIiJ_QC_9A8W-7W4_joSgkpB44eCN1O5bqLrL2hYJ_16COoeZSZ5kDkPIHfAxALcP8-l8NhkLDmKspOJWwhkZWW2gqrUWANaek4GA2jAhrL4gN__AvF6egGJCgrkmo5zf-VEGjDRqQNyElv2W5eLWSPFrF_sWu0L7hE30JX4jbV3sCnau80hDci3ut-mDhm2im7jesB7TsbcnfPRdcL7sUuzWNB9ywTbfkqvgPjOO_nJIlo-z5fSZLV6e5tPJgkXLC9MGhXoLvAoqBFP7gCAa5UEbERoMWFVe1Upo7urKAufeAG8CSCOh9hZADsn972xExFWfYuvSYfV3lvwBkEVbbg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A two-stage equipment predictive maintenance framework for high-performance manufacturing systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bin Hu ; Chee Khiang Pang ; Ming Luo ; Xiang Li ; Hian Leng Chan</creator><creatorcontrib>Bin Hu ; Chee Khiang Pang ; Ming Luo ; Xiang Li ; Hian Leng Chan</creatorcontrib><description>It has been a long interest from researchers to have an effective approach optimizing maintenance scheduling due to the large budgetary item factories spent on equipment maintenance. Since nowadays large scale of machinery log data is already collected and maintained in most manufacturing plants, it is feasible to extract useful information from this database and predict equipment failure utilizing intelligent and statistical techniques. In order to cope with the high complexity raised in predicting equipment failure, a two-stage equipment predictive maintenance framework based on a systematic integration of biological inspired algorithms and statistical analysis considering each advantages and disadvantages has been proposed and developed. Evaluation and development of the genetic algorithm, neural network, and multiple regression forecasting components in this framework for predicting equipment failure is presented. Through the case study on a wafer fabrication plant in a semiconductor company, the feasibility and effectiveness of the proposed system is demonstrated.</description><identifier>ISSN: 2156-2318</identifier><identifier>ISBN: 145772118X</identifier><identifier>ISBN: 9781457721182</identifier><identifier>EISSN: 2158-2297</identifier><identifier>EISBN: 9781457721199</identifier><identifier>EISBN: 9781457721175</identifier><identifier>EISBN: 1457721198</identifier><identifier>EISBN: 1457721171</identifier><identifier>DOI: 10.1109/ICIEA.2012.6360931</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Correlation ; Forecasting ; Genetic algorithm ; Inspection ; Maintenance engineering ; manufacturing systems ; neural networks ; Prediction algorithms ; predictive maintenance ; Production</subject><ispartof>2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2012, p.1343-1348</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6360931$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6360931$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bin Hu</creatorcontrib><creatorcontrib>Chee Khiang Pang</creatorcontrib><creatorcontrib>Ming Luo</creatorcontrib><creatorcontrib>Xiang Li</creatorcontrib><creatorcontrib>Hian Leng Chan</creatorcontrib><title>A two-stage equipment predictive maintenance framework for high-performance manufacturing systems</title><title>2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)</title><addtitle>ICIEA</addtitle><description>It has been a long interest from researchers to have an effective approach optimizing maintenance scheduling due to the large budgetary item factories spent on equipment maintenance. Since nowadays large scale of machinery log data is already collected and maintained in most manufacturing plants, it is feasible to extract useful information from this database and predict equipment failure utilizing intelligent and statistical techniques. In order to cope with the high complexity raised in predicting equipment failure, a two-stage equipment predictive maintenance framework based on a systematic integration of biological inspired algorithms and statistical analysis considering each advantages and disadvantages has been proposed and developed. Evaluation and development of the genetic algorithm, neural network, and multiple regression forecasting components in this framework for predicting equipment failure is presented. Through the case study on a wafer fabrication plant in a semiconductor company, the feasibility and effectiveness of the proposed system is demonstrated.</description><subject>Accuracy</subject><subject>Correlation</subject><subject>Forecasting</subject><subject>Genetic algorithm</subject><subject>Inspection</subject><subject>Maintenance engineering</subject><subject>manufacturing systems</subject><subject>neural networks</subject><subject>Prediction algorithms</subject><subject>predictive maintenance</subject><subject>Production</subject><issn>2156-2318</issn><issn>2158-2297</issn><isbn>145772118X</isbn><isbn>9781457721182</isbn><isbn>9781457721199</isbn><isbn>9781457721175</isbn><isbn>1457721198</isbn><isbn>1457721171</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE1PAjEYhOtXIiJ_QC_9A8W-7W4_joSgkpB44eCN1O5bqLrL2hYJ_16COoeZSZ5kDkPIHfAxALcP8-l8NhkLDmKspOJWwhkZWW2gqrUWANaek4GA2jAhrL4gN__AvF6egGJCgrkmo5zf-VEGjDRqQNyElv2W5eLWSPFrF_sWu0L7hE30JX4jbV3sCnau80hDci3ut-mDhm2im7jesB7TsbcnfPRdcL7sUuzWNB9ywTbfkqvgPjOO_nJIlo-z5fSZLV6e5tPJgkXLC9MGhXoLvAoqBFP7gCAa5UEbERoMWFVe1Upo7urKAufeAG8CSCOh9hZADsn972xExFWfYuvSYfV3lvwBkEVbbg</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Bin Hu</creator><creator>Chee Khiang Pang</creator><creator>Ming Luo</creator><creator>Xiang Li</creator><creator>Hian Leng Chan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>A two-stage equipment predictive maintenance framework for high-performance manufacturing systems</title><author>Bin Hu ; Chee Khiang Pang ; Ming Luo ; Xiang Li ; Hian Leng Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-78e26bf04f6ff85cfe12d6c1782fdefe44c656270a549100c810df138315c9113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Correlation</topic><topic>Forecasting</topic><topic>Genetic algorithm</topic><topic>Inspection</topic><topic>Maintenance engineering</topic><topic>manufacturing systems</topic><topic>neural networks</topic><topic>Prediction algorithms</topic><topic>predictive maintenance</topic><topic>Production</topic><toplevel>online_resources</toplevel><creatorcontrib>Bin Hu</creatorcontrib><creatorcontrib>Chee Khiang Pang</creatorcontrib><creatorcontrib>Ming Luo</creatorcontrib><creatorcontrib>Xiang Li</creatorcontrib><creatorcontrib>Hian Leng Chan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bin Hu</au><au>Chee Khiang Pang</au><au>Ming Luo</au><au>Xiang Li</au><au>Hian Leng Chan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A two-stage equipment predictive maintenance framework for high-performance manufacturing systems</atitle><btitle>2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)</btitle><stitle>ICIEA</stitle><date>2012-07</date><risdate>2012</risdate><spage>1343</spage><epage>1348</epage><pages>1343-1348</pages><issn>2156-2318</issn><eissn>2158-2297</eissn><isbn>145772118X</isbn><isbn>9781457721182</isbn><eisbn>9781457721199</eisbn><eisbn>9781457721175</eisbn><eisbn>1457721198</eisbn><eisbn>1457721171</eisbn><abstract>It has been a long interest from researchers to have an effective approach optimizing maintenance scheduling due to the large budgetary item factories spent on equipment maintenance. Since nowadays large scale of machinery log data is already collected and maintained in most manufacturing plants, it is feasible to extract useful information from this database and predict equipment failure utilizing intelligent and statistical techniques. In order to cope with the high complexity raised in predicting equipment failure, a two-stage equipment predictive maintenance framework based on a systematic integration of biological inspired algorithms and statistical analysis considering each advantages and disadvantages has been proposed and developed. Evaluation and development of the genetic algorithm, neural network, and multiple regression forecasting components in this framework for predicting equipment failure is presented. Through the case study on a wafer fabrication plant in a semiconductor company, the feasibility and effectiveness of the proposed system is demonstrated.</abstract><pub>IEEE</pub><doi>10.1109/ICIEA.2012.6360931</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-2318
ispartof 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2012, p.1343-1348
issn 2156-2318
2158-2297
language eng
recordid cdi_ieee_primary_6360931
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Correlation
Forecasting
Genetic algorithm
Inspection
Maintenance engineering
manufacturing systems
neural networks
Prediction algorithms
predictive maintenance
Production
title A two-stage equipment predictive maintenance framework for high-performance manufacturing systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20two-stage%20equipment%20predictive%20maintenance%20framework%20for%20high-performance%20manufacturing%20systems&rft.btitle=2012%207th%20IEEE%20Conference%20on%20Industrial%20Electronics%20and%20Applications%20(ICIEA)&rft.au=Bin%20Hu&rft.date=2012-07&rft.spage=1343&rft.epage=1348&rft.pages=1343-1348&rft.issn=2156-2318&rft.eissn=2158-2297&rft.isbn=145772118X&rft.isbn_list=9781457721182&rft_id=info:doi/10.1109/ICIEA.2012.6360931&rft_dat=%3Cieee_6IE%3E6360931%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457721199&rft.eisbn_list=9781457721175&rft.eisbn_list=1457721198&rft.eisbn_list=1457721171&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6360931&rfr_iscdi=true