A two-stage equipment predictive maintenance framework for high-performance manufacturing systems

It has been a long interest from researchers to have an effective approach optimizing maintenance scheduling due to the large budgetary item factories spent on equipment maintenance. Since nowadays large scale of machinery log data is already collected and maintained in most manufacturing plants, it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bin Hu, Chee Khiang Pang, Ming Luo, Xiang Li, Hian Leng Chan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been a long interest from researchers to have an effective approach optimizing maintenance scheduling due to the large budgetary item factories spent on equipment maintenance. Since nowadays large scale of machinery log data is already collected and maintained in most manufacturing plants, it is feasible to extract useful information from this database and predict equipment failure utilizing intelligent and statistical techniques. In order to cope with the high complexity raised in predicting equipment failure, a two-stage equipment predictive maintenance framework based on a systematic integration of biological inspired algorithms and statistical analysis considering each advantages and disadvantages has been proposed and developed. Evaluation and development of the genetic algorithm, neural network, and multiple regression forecasting components in this framework for predicting equipment failure is presented. Through the case study on a wafer fabrication plant in a semiconductor company, the feasibility and effectiveness of the proposed system is demonstrated.
ISSN:2156-2318
2158-2297
DOI:10.1109/ICIEA.2012.6360931