Mechanism of silicon exfoliation by hydrogen implantation and He, Li and Si co-implantation [SOI technology]
There has been much interest in reproducing Si exfoliation by H implantation and in understanding the mechanism leading to such a remarkably uniform shearing. We have previously demonstrated that, contrary to the initial speculation, there are in fact three distinct aspects to the process: i) the ge...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There has been much interest in reproducing Si exfoliation by H implantation and in understanding the mechanism leading to such a remarkably uniform shearing. We have previously demonstrated that, contrary to the initial speculation, there are in fact three distinct aspects to the process: i) the generation of damage to the crystalline material by the implantation; ii) the unique surface chemistry of hydrogen and silicon that drives the thermal evolution of this damage region and; iii) the creation of internal pressure that ultimately causes exfoliation ofthe overlying Si layer. Therefore, a detailed understanding of the exfoliation mechanism involves the study of initial damage, of H-passivation of various internal structures and of the mechanical forces exerted by trapped gases as a function of hydrogen implantation dose/depth and annealing temperature. In this work, we have used different hydrogen implantation conditions (ion energies ranging from 1 eV to 1 MeV and substrate crystallographic orientations) as well as co-implantation of a variety of other elemental species, in combination with novel spectroscopic configurations, to further explore these different mechanistic aspects. |
---|---|
ISSN: | 1078-621X 2577-2295 |
DOI: | 10.1109/SOI.1997.634964 |