Automated boundary extraction of the spinal canal in mri based on dynamic programming

The spinal cord is the only communication link between the brain and the body. The abnormalities in it can lead to severe pain and sometimes to paralysis. Due to the growing gap between the number of available radiologists and the number of required radiologists, the need for computer-aided diagnosi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jaehan Koh, Chaudhary, V., Dhillon, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The spinal cord is the only communication link between the brain and the body. The abnormalities in it can lead to severe pain and sometimes to paralysis. Due to the growing gap between the number of available radiologists and the number of required radiologists, the need for computer-aided diagnosis and characterization is increasing. To ease this gap, we have developed a computer-aided diagnosis and characterization framework in lumbar spine that includes the spinal cord, vertebrae, and intervertebral discs. In this paper, we propose two spinal cord boundary extraction methods that fit into our framework based on dynamic programming in lumbar spine MRI. Our method incorporates the intensity of the image and the gradient of the image into a dynamic programming scheme and works in a fully-automatic fashion. The boundaries generated by our method is compared against reference boundaries in terms of Fréchet distance which is known to be a metric for shape analysis. The experimental results from 65 clinical data show that our method finds the spinal canal boundary correctly achieving a mean Fréchet distance of 13.5 pixels. For almost all data, the extracted boundary falls within the spinal cord. So, it can be used as a landmark when marking background regions and finding regions of interest.
ISSN:1094-687X
1557-170X
1558-4615
DOI:10.1109/EMBC.2012.6347497