Two dimensional affective state distribution of the brain under emotion stimuli
Emotions are ambiguous. Many techniques have been employed to perform emotion prediction and to understand emotional elicitations. Brain signals measured using electroencephalogram (EEG) are also used in studies about emotions. Using KDE as feature extraction technique and MLP for performing supervi...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Emotions are ambiguous. Many techniques have been employed to perform emotion prediction and to understand emotional elicitations. Brain signals measured using electroencephalogram (EEG) are also used in studies about emotions. Using KDE as feature extraction technique and MLP for performing supervised learning on the brain signals. It has shown that all channels in EEG can capture emotional experience. In addition it was also indicated that emotions are dynamic as represented by the level of valence and the intensity of arousal. Such findings are useful in biomedical studies, especially in dealing with emotional disorders which can results in using a two-channel EEG device for neurofeedback applications. |
---|---|
ISSN: | 1094-687X 1557-170X 1558-4615 |
DOI: | 10.1109/EMBC.2012.6347374 |