Development of a temperature distribution simulator for lung RFA based on air dependence of thermal and electrical properties

Radio frequency ablation (RFA) for lung cancer has increasingly been used over the past few years, because it is a minimally invasive treatment. As a feature of RFA for lung cancer, lung contains air. Air is low thermal and electrical conductivity. Therefore, RFA for this cancer has the advantage th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yamazaki, N., Watanabe, H., XiaoWei Lu, Isobe, Y., Kobayashi, Y., Miyashita, T., Fujie, M. G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radio frequency ablation (RFA) for lung cancer has increasingly been used over the past few years, because it is a minimally invasive treatment. As a feature of RFA for lung cancer, lung contains air. Air is low thermal and electrical conductivity. Therefore, RFA for this cancer has the advantage that only the cancer is coagulated, because the heated area is confined to the immediate vicinity of the heating point. However, it is difficult for operators to control the precise formation of coagulation zones due to inadequate imaging modalities. We propose a method using finite element method to analyze the temperature distribution of the organ in order to overcome the current deficiencies. Creating an accurate thermal physical model was a challenging problem because of the complexities of the thermal properties of the organ. In this study, we developed a temperature distribution simulator for lung RFA using thermal and electrical properties that were based on the lung's internal air dependence. In addition, we validated the constructed simulator in an in vitro study, and the lung's internal heat transfer during RFA was validated quantitatively.
ISSN:1094-687X
1557-170X
1558-4615
DOI:10.1109/EMBC.2012.6347289