Validation of a subject specific 3-actuator torque-driven model in human vertical jumping
In this study, a forward dynamic subject specific 3-actuator torque-driven model of the human musculoskeletal system was created based on measurements of individual characteristics of a subject. Simulation results were compared with experimental vertical squat jumping with and without adding weights...
Gespeichert in:
Veröffentlicht in: | 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2012-01, Vol.2012, p.4883-4886 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, a forward dynamic subject specific 3-actuator torque-driven model of the human musculoskeletal system was created based on measurements of individual characteristics of a subject. Simulation results were compared with experimental vertical squat jumping with and without adding weights. By analyzing kinematic and kinetic experimental data at the instant of the toe-off for the same initial conditions, it was shown that a simple computer simulation using a suitable cost function could reproduce the real task performed by humans. This investigation is the first step in a wider project that will incorporate elastic components, and that will evaluate the advantages of the individual subject approach in modeling. |
---|---|
ISSN: | 1094-687X 1557-170X 1558-4615 |
DOI: | 10.1109/EMBC.2012.6347088 |