An approach to controlled drug infusion via tracking of the time-varying dose-response

Automatic administration of medicinal drugs has the potential of delivering benefits over manual practices in terms of reduced costs and improved patient outcomes. Safe and successful substitution of a human operator with a computer algorithm relies, however, on the robustness of the control methodo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2012-01, Vol.2012, p.3539-3542
Hauptverfasser: Malaguttiy, N., Dehghaniz, A., Kennedyy, R. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automatic administration of medicinal drugs has the potential of delivering benefits over manual practices in terms of reduced costs and improved patient outcomes. Safe and successful substitution of a human operator with a computer algorithm relies, however, on the robustness of the control methodology, the design of which depends, in turn, on available knowledge about the underlying dose-response model. Real-time estimation of a patient's actual response would ensure that the most suitable control algorithm is adopted, but the potentially time-varying nature of model parameters and the limited number of observation signals may cause the estimation problem to be ill-posed, posing a challenge to adaptive control methods. We propose the use of Bayesian inference through a particle filtering approach as a way to overcome these limitations and improve the robustness of automatic drug administration methods. We report on the results of a simulation study modeling the infusion of vasodepressor drug sodium nitroprusside for the control of mean arterial pressure in acute hypertensive patients. The proposed control architecture was able to meet the required performance objectives under challenging operating conditions.
ISSN:1094-687X
1557-170X
1558-4615
DOI:10.1109/EMBC.2012.6346730