The Kalman-Like Particle Filter: Optimal Estimation With Quantized Innovations/Measurements
We study the problem of optimal estimation and control of linear systems using quantized measurements. We show that the state conditioned on a causal quantization of the measurements can be expressed as the sum of a Gaussian random vector and a certain truncated Gaussian vector. This structure bears...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2013-01, Vol.61 (1), p.131-136 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the problem of optimal estimation and control of linear systems using quantized measurements. We show that the state conditioned on a causal quantization of the measurements can be expressed as the sum of a Gaussian random vector and a certain truncated Gaussian vector. This structure bears close resemblance to the full information Kalman filter and so allows us to effectively combine the Kalman structure with a particle filter to recursively compute the state estimate. We call the resulting filter the Kalman-like particle filter (KLPF) and observe that it delivers close to optimal performance using far fewer particles than that of a particle filter directly applied to the original problem. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2012.2226164 |