A 6b 1.6GS/s ADC with redundant cycle 1-tap embedded DFE in 90nm CMOS
Serial link receivers with ADC front-ends are emerging in order to scale data rates over high attenuation channels. Embedding partial equalization inside the front-end ADC can potentially result in lowering the complexity of back-end DSP and/or decreasing the ADC resolution requirement, which result...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Serial link receivers with ADC front-ends are emerging in order to scale data rates over high attenuation channels. Embedding partial equalization inside the front-end ADC can potentially result in lowering the complexity of back-end DSP and/or decreasing the ADC resolution requirement, which results in a more energy-efficient receiver. This paper presents a 6b 1.6GS/s ADC with a novel embedded DFE structure. Leveraging a time-interleaved SAR ADC architecture, a redundant cycle loop-unrolled technique is proposed in order to relax the DFE feedback critical path delay with low power/area overhead. Fabricated in an LP 90nm CMOS process, the 6b ADC with embedded 1-tap DFE consumes 20mW total power, including front-end T/Hs and reference buffers, and the core time-interleaved ADC occupies 0.24mm 2 area. |
---|---|
ISSN: | 0886-5930 2152-3630 |
DOI: | 10.1109/CICC.2012.6330582 |