Improved variational inference for tracking in clutter

We apply the expectation propagation (EP) algorithm to temporally track targets using sensors that produce spurious clutter detections, and may sometimes fail to detect the true target. The variational inference framework underlying EP allows the tracker to be easily adapted to varying measurement m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pacheco, J. L., Sudderth, E. B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 855
container_issue
container_start_page 852
container_title
container_volume
creator Pacheco, J. L.
Sudderth, E. B.
description We apply the expectation propagation (EP) algorithm to temporally track targets using sensors that produce spurious clutter detections, and may sometimes fail to detect the true target. The variational inference framework underlying EP allows the tracker to be easily adapted to varying measurement models. We develop variants of EP based on single Gaussian and Gaussian mixture approximations of posterior target location distributions, which offer a tradeoff between accuracy and computational complexity. Experiments show improved tracking accuracy and uncertainty estimation relative to widely used baseline tracking algorithms.
doi_str_mv 10.1109/SSP.2012.6319840
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6319840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6319840</ieee_id><sourcerecordid>6319840</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-3b649523a0339da1494deb655c5bbefc8845bd7c160355ee88dc675f74cb3c463</originalsourceid><addsrcrecordid>eNo1kEtLw0AUhccXWGv2gpv8gdS5c-e5lOKjUFCorsvM5EZG06RMYsF_b8C6OnA--Dgcxm6ALwC4u9tsXheCg1hoBGclP2FXILVBDhbMKZsJ7bBCpeCMFc7Yfybk-cTQYMUtx0tWDMMn5xy0FWjFjOnVbp_7A9Xlwefkx9R3vi1T11CmLlLZ9Lkcs49fqfuY6jK23-NI-ZpdNL4dqDjmnL0_Prwtn6v1y9Nqeb-ukgAzVhi0dEqg54iu9iCdrClopaIKgZporVShNhE0n6YTWVtHbVRjZAwYpcY5u_3zJiLa7nPa-fyzPV6Av3IuSoQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved variational inference for tracking in clutter</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pacheco, J. L. ; Sudderth, E. B.</creator><creatorcontrib>Pacheco, J. L. ; Sudderth, E. B.</creatorcontrib><description>We apply the expectation propagation (EP) algorithm to temporally track targets using sensors that produce spurious clutter detections, and may sometimes fail to detect the true target. The variational inference framework underlying EP allows the tracker to be easily adapted to varying measurement models. We develop variants of EP based on single Gaussian and Gaussian mixture approximations of posterior target location distributions, which offer a tradeoff between accuracy and computational complexity. Experiments show improved tracking accuracy and uncertainty estimation relative to widely used baseline tracking algorithms.</description><identifier>ISSN: 2373-0803</identifier><identifier>ISBN: 9781467301824</identifier><identifier>ISBN: 1467301825</identifier><identifier>EISSN: 2693-3551</identifier><identifier>EISBN: 1467301817</identifier><identifier>EISBN: 9781467301817</identifier><identifier>DOI: 10.1109/SSP.2012.6319840</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Approximation methods ; Bayesian inference ; Clutter ; Data models ; expectation propagation ; Hidden Markov models ; Inference algorithms ; Target tracking ; variational methods</subject><ispartof>2012 IEEE Statistical Signal Processing Workshop (SSP), 2012, p.852-855</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6319840$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6319840$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pacheco, J. L.</creatorcontrib><creatorcontrib>Sudderth, E. B.</creatorcontrib><title>Improved variational inference for tracking in clutter</title><title>2012 IEEE Statistical Signal Processing Workshop (SSP)</title><addtitle>SSP</addtitle><description>We apply the expectation propagation (EP) algorithm to temporally track targets using sensors that produce spurious clutter detections, and may sometimes fail to detect the true target. The variational inference framework underlying EP allows the tracker to be easily adapted to varying measurement models. We develop variants of EP based on single Gaussian and Gaussian mixture approximations of posterior target location distributions, which offer a tradeoff between accuracy and computational complexity. Experiments show improved tracking accuracy and uncertainty estimation relative to widely used baseline tracking algorithms.</description><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>Bayesian inference</subject><subject>Clutter</subject><subject>Data models</subject><subject>expectation propagation</subject><subject>Hidden Markov models</subject><subject>Inference algorithms</subject><subject>Target tracking</subject><subject>variational methods</subject><issn>2373-0803</issn><issn>2693-3551</issn><isbn>9781467301824</isbn><isbn>1467301825</isbn><isbn>1467301817</isbn><isbn>9781467301817</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kEtLw0AUhccXWGv2gpv8gdS5c-e5lOKjUFCorsvM5EZG06RMYsF_b8C6OnA--Dgcxm6ALwC4u9tsXheCg1hoBGclP2FXILVBDhbMKZsJ7bBCpeCMFc7Yfybk-cTQYMUtx0tWDMMn5xy0FWjFjOnVbp_7A9Xlwefkx9R3vi1T11CmLlLZ9Lkcs49fqfuY6jK23-NI-ZpdNL4dqDjmnL0_Prwtn6v1y9Nqeb-ukgAzVhi0dEqg54iu9iCdrClopaIKgZporVShNhE0n6YTWVtHbVRjZAwYpcY5u_3zJiLa7nPa-fyzPV6Av3IuSoQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Pacheco, J. L.</creator><creator>Sudderth, E. B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20120101</creationdate><title>Improved variational inference for tracking in clutter</title><author>Pacheco, J. L. ; Sudderth, E. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-3b649523a0339da1494deb655c5bbefc8845bd7c160355ee88dc675f74cb3c463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>Bayesian inference</topic><topic>Clutter</topic><topic>Data models</topic><topic>expectation propagation</topic><topic>Hidden Markov models</topic><topic>Inference algorithms</topic><topic>Target tracking</topic><topic>variational methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Pacheco, J. L.</creatorcontrib><creatorcontrib>Sudderth, E. B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pacheco, J. L.</au><au>Sudderth, E. B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved variational inference for tracking in clutter</atitle><btitle>2012 IEEE Statistical Signal Processing Workshop (SSP)</btitle><stitle>SSP</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>852</spage><epage>855</epage><pages>852-855</pages><issn>2373-0803</issn><eissn>2693-3551</eissn><isbn>9781467301824</isbn><isbn>1467301825</isbn><eisbn>1467301817</eisbn><eisbn>9781467301817</eisbn><abstract>We apply the expectation propagation (EP) algorithm to temporally track targets using sensors that produce spurious clutter detections, and may sometimes fail to detect the true target. The variational inference framework underlying EP allows the tracker to be easily adapted to varying measurement models. We develop variants of EP based on single Gaussian and Gaussian mixture approximations of posterior target location distributions, which offer a tradeoff between accuracy and computational complexity. Experiments show improved tracking accuracy and uncertainty estimation relative to widely used baseline tracking algorithms.</abstract><pub>IEEE</pub><doi>10.1109/SSP.2012.6319840</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2373-0803
ispartof 2012 IEEE Statistical Signal Processing Workshop (SSP), 2012, p.852-855
issn 2373-0803
2693-3551
language eng
recordid cdi_ieee_primary_6319840
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Approximation methods
Bayesian inference
Clutter
Data models
expectation propagation
Hidden Markov models
Inference algorithms
Target tracking
variational methods
title Improved variational inference for tracking in clutter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20variational%20inference%20for%20tracking%20in%20clutter&rft.btitle=2012%20IEEE%20Statistical%20Signal%20Processing%20Workshop%20(SSP)&rft.au=Pacheco,%20J.%20L.&rft.date=2012-01-01&rft.spage=852&rft.epage=855&rft.pages=852-855&rft.issn=2373-0803&rft.eissn=2693-3551&rft.isbn=9781467301824&rft.isbn_list=1467301825&rft_id=info:doi/10.1109/SSP.2012.6319840&rft_dat=%3Cieee_6IE%3E6319840%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467301817&rft.eisbn_list=9781467301817&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6319840&rfr_iscdi=true