Improved variational inference for tracking in clutter

We apply the expectation propagation (EP) algorithm to temporally track targets using sensors that produce spurious clutter detections, and may sometimes fail to detect the true target. The variational inference framework underlying EP allows the tracker to be easily adapted to varying measurement m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pacheco, J. L., Sudderth, E. B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply the expectation propagation (EP) algorithm to temporally track targets using sensors that produce spurious clutter detections, and may sometimes fail to detect the true target. The variational inference framework underlying EP allows the tracker to be easily adapted to varying measurement models. We develop variants of EP based on single Gaussian and Gaussian mixture approximations of posterior target location distributions, which offer a tradeoff between accuracy and computational complexity. Experiments show improved tracking accuracy and uncertainty estimation relative to widely used baseline tracking algorithms.
ISSN:2373-0803
2693-3551
DOI:10.1109/SSP.2012.6319840