An integrated approach towards structural and LPV controller design in wind turbines
An iterative redesign algorithm is proposed to integrate the design of the structural parameters and a linear parameter varying (LPV) controller for a wind turbine. The LPV controller is designed for a lumped model of the wind turbine with five degrees-of-freedom consisting of blades, drivetrain and...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An iterative redesign algorithm is proposed to integrate the design of the structural parameters and a linear parameter varying (LPV) controller for a wind turbine. The LPV controller is designed for a lumped model of the wind turbine with five degrees-of-freedom consisting of blades, drivetrain and the tower. The controller is scheduled in real-time based on the mean wind speed. The controller objective is to track an optimal power generation trajectory and minimize the H ∞ performance index from the wind turbulence disturbance to the controlled output vector. The solution of the problem is formulated as an iterative sequential controller/structure redesign to obtain the values corresponding to a local optimal performance index. Each step of the iterative procedure is formulated as a linear matrix inequality (LMI) optimization problem that can be solved efficiently using available LMI solvers. The simulation results show the effectiveness of the algorithm in converging to a local optimal solution and improving the overall performance of the system in FAST closed-loop responses via the integrated design. |
---|---|
ISSN: | 0743-1619 2378-5861 |
DOI: | 10.1109/ACC.2012.6314789 |