Multi-time scales coordination scheduling of wind power integrated system

Coordination method between long-term and short-time generation scheduling of wind power integrated system are proposed. Long-term scheduling mainly solves unit maintenance scheduling and energy allocation among weeks, and short-term scheduling decides unit commitment and hourly power output. In ord...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kui Wang, Buhan Zhang, Xiaoshan Wu, Jiajun Zhai, Wen Shao, Yao Duan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Kui Wang
Buhan Zhang
Xiaoshan Wu
Jiajun Zhai
Wen Shao
Yao Duan
description Coordination method between long-term and short-time generation scheduling of wind power integrated system are proposed. Long-term scheduling mainly solves unit maintenance scheduling and energy allocation among weeks, and short-term scheduling decides unit commitment and hourly power output. In order to cope with the high uncertainty of wind power and load demand, dynamic rolling generation scheduling are implemented weekly based on the updated load and wind power prediction results. A modified IEEE 118-bus system is applied to test the proposed model.
doi_str_mv 10.1109/ISGT-Asia.2012.6303174
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6303174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6303174</ieee_id><sourcerecordid>6303174</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b37f2166707b5474bd9869fef3ca4c29bf44ac4d3bb18f3d4f3c8a8f34e7c2223</originalsourceid><addsrcrecordid>eNo9kMtqwzAURNUXNE39BYWiH3CqK13rsQyhTQMpXTT7IFtSquLYwVII-fsaGrqawxyYxRDyDGwGwMzL6mu5Kecp2hlnwGdSMAEKr0hhlAaUSgAHI6_JhAulS10hvyEPF8Ghuv0XAu9JkdIPYwyk5gjVhKw-jm2OZY57T1NjW59o0_eDi53Nse_G7tu7Yxu7He0DPcXO0UN_8gONXfa7wWbvaDqn7PeP5C7YNvniklOyeXvdLN7L9edytZivy2hYLmuhAgcpFVN1hQprZ7Q0wQfRWGy4qQOibdCJugYdhMNRaDsSetVwzsWUPP3NRu_99jDEvR3O28sp4heK81QC</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-time scales coordination scheduling of wind power integrated system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kui Wang ; Buhan Zhang ; Xiaoshan Wu ; Jiajun Zhai ; Wen Shao ; Yao Duan</creator><creatorcontrib>Kui Wang ; Buhan Zhang ; Xiaoshan Wu ; Jiajun Zhai ; Wen Shao ; Yao Duan</creatorcontrib><description>Coordination method between long-term and short-time generation scheduling of wind power integrated system are proposed. Long-term scheduling mainly solves unit maintenance scheduling and energy allocation among weeks, and short-term scheduling decides unit commitment and hourly power output. In order to cope with the high uncertainty of wind power and load demand, dynamic rolling generation scheduling are implemented weekly based on the updated load and wind power prediction results. A modified IEEE 118-bus system is applied to test the proposed model.</description><identifier>ISSN: 2378-8534</identifier><identifier>ISBN: 1467312215</identifier><identifier>ISBN: 9781467312219</identifier><identifier>EISSN: 2378-8542</identifier><identifier>EISBN: 9781467312196</identifier><identifier>EISBN: 9781467312202</identifier><identifier>EISBN: 1467312207</identifier><identifier>EISBN: 1467312193</identifier><identifier>DOI: 10.1109/ISGT-Asia.2012.6303174</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dynamic scheduling ; Indexes ; long-term scheduling ; Maintenance engineering ; multi-time scales coordination ; Power systems ; short-term scheduling ; Wind farms ; wind power ; Wind power generation</subject><ispartof>IEEE PES Innovative Smart Grid Technologies, 2012, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6303174$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6303174$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kui Wang</creatorcontrib><creatorcontrib>Buhan Zhang</creatorcontrib><creatorcontrib>Xiaoshan Wu</creatorcontrib><creatorcontrib>Jiajun Zhai</creatorcontrib><creatorcontrib>Wen Shao</creatorcontrib><creatorcontrib>Yao Duan</creatorcontrib><title>Multi-time scales coordination scheduling of wind power integrated system</title><title>IEEE PES Innovative Smart Grid Technologies</title><addtitle>ISGT-Asia</addtitle><description>Coordination method between long-term and short-time generation scheduling of wind power integrated system are proposed. Long-term scheduling mainly solves unit maintenance scheduling and energy allocation among weeks, and short-term scheduling decides unit commitment and hourly power output. In order to cope with the high uncertainty of wind power and load demand, dynamic rolling generation scheduling are implemented weekly based on the updated load and wind power prediction results. A modified IEEE 118-bus system is applied to test the proposed model.</description><subject>Dynamic scheduling</subject><subject>Indexes</subject><subject>long-term scheduling</subject><subject>Maintenance engineering</subject><subject>multi-time scales coordination</subject><subject>Power systems</subject><subject>short-term scheduling</subject><subject>Wind farms</subject><subject>wind power</subject><subject>Wind power generation</subject><issn>2378-8534</issn><issn>2378-8542</issn><isbn>1467312215</isbn><isbn>9781467312219</isbn><isbn>9781467312196</isbn><isbn>9781467312202</isbn><isbn>1467312207</isbn><isbn>1467312193</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtqwzAURNUXNE39BYWiH3CqK13rsQyhTQMpXTT7IFtSquLYwVII-fsaGrqawxyYxRDyDGwGwMzL6mu5Kecp2hlnwGdSMAEKr0hhlAaUSgAHI6_JhAulS10hvyEPF8Ghuv0XAu9JkdIPYwyk5gjVhKw-jm2OZY57T1NjW59o0_eDi53Nse_G7tu7Yxu7He0DPcXO0UN_8gONXfa7wWbvaDqn7PeP5C7YNvniklOyeXvdLN7L9edytZivy2hYLmuhAgcpFVN1hQprZ7Q0wQfRWGy4qQOibdCJugYdhMNRaDsSetVwzsWUPP3NRu_99jDEvR3O28sp4heK81QC</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Kui Wang</creator><creator>Buhan Zhang</creator><creator>Xiaoshan Wu</creator><creator>Jiajun Zhai</creator><creator>Wen Shao</creator><creator>Yao Duan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>Multi-time scales coordination scheduling of wind power integrated system</title><author>Kui Wang ; Buhan Zhang ; Xiaoshan Wu ; Jiajun Zhai ; Wen Shao ; Yao Duan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b37f2166707b5474bd9869fef3ca4c29bf44ac4d3bb18f3d4f3c8a8f34e7c2223</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Dynamic scheduling</topic><topic>Indexes</topic><topic>long-term scheduling</topic><topic>Maintenance engineering</topic><topic>multi-time scales coordination</topic><topic>Power systems</topic><topic>short-term scheduling</topic><topic>Wind farms</topic><topic>wind power</topic><topic>Wind power generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Kui Wang</creatorcontrib><creatorcontrib>Buhan Zhang</creatorcontrib><creatorcontrib>Xiaoshan Wu</creatorcontrib><creatorcontrib>Jiajun Zhai</creatorcontrib><creatorcontrib>Wen Shao</creatorcontrib><creatorcontrib>Yao Duan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kui Wang</au><au>Buhan Zhang</au><au>Xiaoshan Wu</au><au>Jiajun Zhai</au><au>Wen Shao</au><au>Yao Duan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-time scales coordination scheduling of wind power integrated system</atitle><btitle>IEEE PES Innovative Smart Grid Technologies</btitle><stitle>ISGT-Asia</stitle><date>2012-05</date><risdate>2012</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2378-8534</issn><eissn>2378-8542</eissn><isbn>1467312215</isbn><isbn>9781467312219</isbn><eisbn>9781467312196</eisbn><eisbn>9781467312202</eisbn><eisbn>1467312207</eisbn><eisbn>1467312193</eisbn><abstract>Coordination method between long-term and short-time generation scheduling of wind power integrated system are proposed. Long-term scheduling mainly solves unit maintenance scheduling and energy allocation among weeks, and short-term scheduling decides unit commitment and hourly power output. In order to cope with the high uncertainty of wind power and load demand, dynamic rolling generation scheduling are implemented weekly based on the updated load and wind power prediction results. A modified IEEE 118-bus system is applied to test the proposed model.</abstract><pub>IEEE</pub><doi>10.1109/ISGT-Asia.2012.6303174</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2378-8534
ispartof IEEE PES Innovative Smart Grid Technologies, 2012, p.1-4
issn 2378-8534
2378-8542
language eng
recordid cdi_ieee_primary_6303174
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Dynamic scheduling
Indexes
long-term scheduling
Maintenance engineering
multi-time scales coordination
Power systems
short-term scheduling
Wind farms
wind power
Wind power generation
title Multi-time scales coordination scheduling of wind power integrated system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-time%20scales%20coordination%20scheduling%20of%20wind%20power%20integrated%20system&rft.btitle=IEEE%20PES%20Innovative%20Smart%20Grid%20Technologies&rft.au=Kui%20Wang&rft.date=2012-05&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2378-8534&rft.eissn=2378-8542&rft.isbn=1467312215&rft.isbn_list=9781467312219&rft_id=info:doi/10.1109/ISGT-Asia.2012.6303174&rft_dat=%3Cieee_6IE%3E6303174%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467312196&rft.eisbn_list=9781467312202&rft.eisbn_list=1467312207&rft.eisbn_list=1467312193&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6303174&rfr_iscdi=true