Scalable complex graph analysis with the knowledge discovery toolbox
The Knowledge Discovery Toolbox (KDT) enables domain experts to perform complex analyses of huge datasets on supercomputers using a high-level language without grappling with the difficulties of writing parallel code, calling parallel libraries, or becoming a graph expert. KDT delivers competitive p...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Knowledge Discovery Toolbox (KDT) enables domain experts to perform complex analyses of huge datasets on supercomputers using a high-level language without grappling with the difficulties of writing parallel code, calling parallel libraries, or becoming a graph expert. KDT delivers competitive performance from a general-purpose, reusable library for graphs on the order of 10 billion edges and greater. We describe our approach for supporting arbirary vertex and edge attributes, in-place graph filtering, and graph traversal using pre-defined access patterns. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.2012.6289128 |