Adaptive compressive sampling using partially observable markov decision processes

We present an approach to adaptive measurement selection in compressive sensing for estimating sparse signals. Given a fixed number of measurements, we consider the sequential selection of the rows of a compressive measurement matrix to maximize the mutual information between the measurements and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zahedi, R., Krakow, L. W., Chong, E. K. P., Pezeshki, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an approach to adaptive measurement selection in compressive sensing for estimating sparse signals. Given a fixed number of measurements, we consider the sequential selection of the rows of a compressive measurement matrix to maximize the mutual information between the measurements and the sparse signal's support. We formulate this problem as a partially observable Markov decision process (POMDP), which enables the application of principled reasoning for sequential measurement selection based on Bellman's optimality condition.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2012.6289109