Semantic query expansion and context-based discriminative term modeling for spoken document retrieval

In this paper, we propose a semantic query expansion approach by extending the query-regularized mixture model to include latent topics and apply it to spoken documents. We also propose to use context feature vectors for spoken segments to train SVM models to enhance the posterior-weighted normalize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tsung-wei Tu, Hung-yi Lee, Yu-yu Chou, Lin-shan Lee
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5088
container_issue
container_start_page 5085
container_title
container_volume
creator Tsung-wei Tu
Hung-yi Lee
Yu-yu Chou
Lin-shan Lee
description In this paper, we propose a semantic query expansion approach by extending the query-regularized mixture model to include latent topics and apply it to spoken documents. We also propose to use context feature vectors for spoken segments to train SVM models to enhance the posterior-weighted normalized term frequencies in lattices. Experiments on Mandarin broadcast news showed that this approach offered good improvements when applied on spoken documents including relatively high recognition errors.
doi_str_mv 10.1109/ICASSP.2012.6289064
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6289064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6289064</ieee_id><sourcerecordid>6289064</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2258f5f016ea5c80687c27f3446be6ca81ffe4fb1044e654752098e2a025bb103</originalsourceid><addsrcrecordid>eNo1UNtKAzEUjDew1n5BX_IDW5Nsro9StAoFhSr4VrLZE4l2szVJS_v3LljPy8AMM8wchKaUzCgl5u55fr9avc4YoWwmmTZE8jM0MUpTLlVNCJfmHI1YrUxFDfm4QDf_guCXaEQFI5Wk3FyjSc5fZLjBSmo5QrCCzsYSHP7ZQTpiOGxtzKGP2MYWuz4WOJSqsRla3IbsUuhCtCXsARdIHe76FjYhfmLfJ5y3_TdE3PZu10EsOEFJAfZ2c4uuvN1kmJxwjN4fH97mT9XyZTFsW1aBKlEqxoT2whMqwQqnidTKMeVrzmUD0llNvQfuG0o4Bym4GnYZDcwSJpqBrcdo-pcbAGC9HcradFyfPlb_AubCXTA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Semantic query expansion and context-based discriminative term modeling for spoken document retrieval</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tsung-wei Tu ; Hung-yi Lee ; Yu-yu Chou ; Lin-shan Lee</creator><creatorcontrib>Tsung-wei Tu ; Hung-yi Lee ; Yu-yu Chou ; Lin-shan Lee</creatorcontrib><description>In this paper, we propose a semantic query expansion approach by extending the query-regularized mixture model to include latent topics and apply it to spoken documents. We also propose to use context feature vectors for spoken segments to train SVM models to enhance the posterior-weighted normalized term frequencies in lattices. Experiments on Mandarin broadcast news showed that this approach offered good improvements when applied on spoken documents including relatively high recognition errors.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6289064</identifier><language>eng</language><publisher>IEEE</publisher><subject>Context ; Context modeling ; Information retrieval ; Lattices ; Manuals ; Semantic Retrieval ; Semantics ; Spoken Term Detection ; Support vector machines</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.5085-5088</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6289064$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6289064$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tsung-wei Tu</creatorcontrib><creatorcontrib>Hung-yi Lee</creatorcontrib><creatorcontrib>Yu-yu Chou</creatorcontrib><creatorcontrib>Lin-shan Lee</creatorcontrib><title>Semantic query expansion and context-based discriminative term modeling for spoken document retrieval</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>In this paper, we propose a semantic query expansion approach by extending the query-regularized mixture model to include latent topics and apply it to spoken documents. We also propose to use context feature vectors for spoken segments to train SVM models to enhance the posterior-weighted normalized term frequencies in lattices. Experiments on Mandarin broadcast news showed that this approach offered good improvements when applied on spoken documents including relatively high recognition errors.</description><subject>Context</subject><subject>Context modeling</subject><subject>Information retrieval</subject><subject>Lattices</subject><subject>Manuals</subject><subject>Semantic Retrieval</subject><subject>Semantics</subject><subject>Spoken Term Detection</subject><subject>Support vector machines</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtKAzEUjDew1n5BX_IDW5Nsro9StAoFhSr4VrLZE4l2szVJS_v3LljPy8AMM8wchKaUzCgl5u55fr9avc4YoWwmmTZE8jM0MUpTLlVNCJfmHI1YrUxFDfm4QDf_guCXaEQFI5Wk3FyjSc5fZLjBSmo5QrCCzsYSHP7ZQTpiOGxtzKGP2MYWuz4WOJSqsRla3IbsUuhCtCXsARdIHe76FjYhfmLfJ5y3_TdE3PZu10EsOEFJAfZ2c4uuvN1kmJxwjN4fH97mT9XyZTFsW1aBKlEqxoT2whMqwQqnidTKMeVrzmUD0llNvQfuG0o4Bym4GnYZDcwSJpqBrcdo-pcbAGC9HcradFyfPlb_AubCXTA</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Tsung-wei Tu</creator><creator>Hung-yi Lee</creator><creator>Yu-yu Chou</creator><creator>Lin-shan Lee</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201203</creationdate><title>Semantic query expansion and context-based discriminative term modeling for spoken document retrieval</title><author>Tsung-wei Tu ; Hung-yi Lee ; Yu-yu Chou ; Lin-shan Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2258f5f016ea5c80687c27f3446be6ca81ffe4fb1044e654752098e2a025bb103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Context</topic><topic>Context modeling</topic><topic>Information retrieval</topic><topic>Lattices</topic><topic>Manuals</topic><topic>Semantic Retrieval</topic><topic>Semantics</topic><topic>Spoken Term Detection</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Tsung-wei Tu</creatorcontrib><creatorcontrib>Hung-yi Lee</creatorcontrib><creatorcontrib>Yu-yu Chou</creatorcontrib><creatorcontrib>Lin-shan Lee</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsung-wei Tu</au><au>Hung-yi Lee</au><au>Yu-yu Chou</au><au>Lin-shan Lee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Semantic query expansion and context-based discriminative term modeling for spoken document retrieval</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-03</date><risdate>2012</risdate><spage>5085</spage><epage>5088</epage><pages>5085-5088</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>In this paper, we propose a semantic query expansion approach by extending the query-regularized mixture model to include latent topics and apply it to spoken documents. We also propose to use context feature vectors for spoken segments to train SVM models to enhance the posterior-weighted normalized term frequencies in lattices. Experiments on Mandarin broadcast news showed that this approach offered good improvements when applied on spoken documents including relatively high recognition errors.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6289064</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.5085-5088
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_6289064
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Context
Context modeling
Information retrieval
Lattices
Manuals
Semantic Retrieval
Semantics
Spoken Term Detection
Support vector machines
title Semantic query expansion and context-based discriminative term modeling for spoken document retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A53%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Semantic%20query%20expansion%20and%20context-based%20discriminative%20term%20modeling%20for%20spoken%20document%20retrieval&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Tsung-wei%20Tu&rft.date=2012-03&rft.spage=5085&rft.epage=5088&rft.pages=5085-5088&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6289064&rft_dat=%3Cieee_6IE%3E6289064%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6289064&rfr_iscdi=true