Semantic query expansion and context-based discriminative term modeling for spoken document retrieval
In this paper, we propose a semantic query expansion approach by extending the query-regularized mixture model to include latent topics and apply it to spoken documents. We also propose to use context feature vectors for spoken segments to train SVM models to enhance the posterior-weighted normalize...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5088 |
---|---|
container_issue | |
container_start_page | 5085 |
container_title | |
container_volume | |
creator | Tsung-wei Tu Hung-yi Lee Yu-yu Chou Lin-shan Lee |
description | In this paper, we propose a semantic query expansion approach by extending the query-regularized mixture model to include latent topics and apply it to spoken documents. We also propose to use context feature vectors for spoken segments to train SVM models to enhance the posterior-weighted normalized term frequencies in lattices. Experiments on Mandarin broadcast news showed that this approach offered good improvements when applied on spoken documents including relatively high recognition errors. |
doi_str_mv | 10.1109/ICASSP.2012.6289064 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6289064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6289064</ieee_id><sourcerecordid>6289064</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2258f5f016ea5c80687c27f3446be6ca81ffe4fb1044e654752098e2a025bb103</originalsourceid><addsrcrecordid>eNo1UNtKAzEUjDew1n5BX_IDW5Nsro9StAoFhSr4VrLZE4l2szVJS_v3LljPy8AMM8wchKaUzCgl5u55fr9avc4YoWwmmTZE8jM0MUpTLlVNCJfmHI1YrUxFDfm4QDf_guCXaEQFI5Wk3FyjSc5fZLjBSmo5QrCCzsYSHP7ZQTpiOGxtzKGP2MYWuz4WOJSqsRla3IbsUuhCtCXsARdIHe76FjYhfmLfJ5y3_TdE3PZu10EsOEFJAfZ2c4uuvN1kmJxwjN4fH97mT9XyZTFsW1aBKlEqxoT2whMqwQqnidTKMeVrzmUD0llNvQfuG0o4Bym4GnYZDcwSJpqBrcdo-pcbAGC9HcradFyfPlb_AubCXTA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Semantic query expansion and context-based discriminative term modeling for spoken document retrieval</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tsung-wei Tu ; Hung-yi Lee ; Yu-yu Chou ; Lin-shan Lee</creator><creatorcontrib>Tsung-wei Tu ; Hung-yi Lee ; Yu-yu Chou ; Lin-shan Lee</creatorcontrib><description>In this paper, we propose a semantic query expansion approach by extending the query-regularized mixture model to include latent topics and apply it to spoken documents. We also propose to use context feature vectors for spoken segments to train SVM models to enhance the posterior-weighted normalized term frequencies in lattices. Experiments on Mandarin broadcast news showed that this approach offered good improvements when applied on spoken documents including relatively high recognition errors.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6289064</identifier><language>eng</language><publisher>IEEE</publisher><subject>Context ; Context modeling ; Information retrieval ; Lattices ; Manuals ; Semantic Retrieval ; Semantics ; Spoken Term Detection ; Support vector machines</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.5085-5088</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6289064$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6289064$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tsung-wei Tu</creatorcontrib><creatorcontrib>Hung-yi Lee</creatorcontrib><creatorcontrib>Yu-yu Chou</creatorcontrib><creatorcontrib>Lin-shan Lee</creatorcontrib><title>Semantic query expansion and context-based discriminative term modeling for spoken document retrieval</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>In this paper, we propose a semantic query expansion approach by extending the query-regularized mixture model to include latent topics and apply it to spoken documents. We also propose to use context feature vectors for spoken segments to train SVM models to enhance the posterior-weighted normalized term frequencies in lattices. Experiments on Mandarin broadcast news showed that this approach offered good improvements when applied on spoken documents including relatively high recognition errors.</description><subject>Context</subject><subject>Context modeling</subject><subject>Information retrieval</subject><subject>Lattices</subject><subject>Manuals</subject><subject>Semantic Retrieval</subject><subject>Semantics</subject><subject>Spoken Term Detection</subject><subject>Support vector machines</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtKAzEUjDew1n5BX_IDW5Nsro9StAoFhSr4VrLZE4l2szVJS_v3LljPy8AMM8wchKaUzCgl5u55fr9avc4YoWwmmTZE8jM0MUpTLlVNCJfmHI1YrUxFDfm4QDf_guCXaEQFI5Wk3FyjSc5fZLjBSmo5QrCCzsYSHP7ZQTpiOGxtzKGP2MYWuz4WOJSqsRla3IbsUuhCtCXsARdIHe76FjYhfmLfJ5y3_TdE3PZu10EsOEFJAfZ2c4uuvN1kmJxwjN4fH97mT9XyZTFsW1aBKlEqxoT2whMqwQqnidTKMeVrzmUD0llNvQfuG0o4Bym4GnYZDcwSJpqBrcdo-pcbAGC9HcradFyfPlb_AubCXTA</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Tsung-wei Tu</creator><creator>Hung-yi Lee</creator><creator>Yu-yu Chou</creator><creator>Lin-shan Lee</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201203</creationdate><title>Semantic query expansion and context-based discriminative term modeling for spoken document retrieval</title><author>Tsung-wei Tu ; Hung-yi Lee ; Yu-yu Chou ; Lin-shan Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2258f5f016ea5c80687c27f3446be6ca81ffe4fb1044e654752098e2a025bb103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Context</topic><topic>Context modeling</topic><topic>Information retrieval</topic><topic>Lattices</topic><topic>Manuals</topic><topic>Semantic Retrieval</topic><topic>Semantics</topic><topic>Spoken Term Detection</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Tsung-wei Tu</creatorcontrib><creatorcontrib>Hung-yi Lee</creatorcontrib><creatorcontrib>Yu-yu Chou</creatorcontrib><creatorcontrib>Lin-shan Lee</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsung-wei Tu</au><au>Hung-yi Lee</au><au>Yu-yu Chou</au><au>Lin-shan Lee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Semantic query expansion and context-based discriminative term modeling for spoken document retrieval</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-03</date><risdate>2012</risdate><spage>5085</spage><epage>5088</epage><pages>5085-5088</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>In this paper, we propose a semantic query expansion approach by extending the query-regularized mixture model to include latent topics and apply it to spoken documents. We also propose to use context feature vectors for spoken segments to train SVM models to enhance the posterior-weighted normalized term frequencies in lattices. Experiments on Mandarin broadcast news showed that this approach offered good improvements when applied on spoken documents including relatively high recognition errors.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6289064</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.5085-5088 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_6289064 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Context Context modeling Information retrieval Lattices Manuals Semantic Retrieval Semantics Spoken Term Detection Support vector machines |
title | Semantic query expansion and context-based discriminative term modeling for spoken document retrieval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A53%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Semantic%20query%20expansion%20and%20context-based%20discriminative%20term%20modeling%20for%20spoken%20document%20retrieval&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Tsung-wei%20Tu&rft.date=2012-03&rft.spage=5085&rft.epage=5088&rft.pages=5085-5088&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6289064&rft_dat=%3Cieee_6IE%3E6289064%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6289064&rfr_iscdi=true |