Semantic query expansion and context-based discriminative term modeling for spoken document retrieval

In this paper, we propose a semantic query expansion approach by extending the query-regularized mixture model to include latent topics and apply it to spoken documents. We also propose to use context feature vectors for spoken segments to train SVM models to enhance the posterior-weighted normalize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tsung-wei Tu, Hung-yi Lee, Yu-yu Chou, Lin-shan Lee
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a semantic query expansion approach by extending the query-regularized mixture model to include latent topics and apply it to spoken documents. We also propose to use context feature vectors for spoken segments to train SVM models to enhance the posterior-weighted normalized term frequencies in lattices. Experiments on Mandarin broadcast news showed that this approach offered good improvements when applied on spoken documents including relatively high recognition errors.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2012.6289064