Improving nonnative speech understanding using context and N-best meaning fusion

Speech understanding of nonnative language learners' speech is a challenging problem. In this paper, we investigate the use of dialogue context cues to help improve concept error rate (CER) of nonnative speech in a language learning system. Given that the student's task is known, we show t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yushi Xu, Seneff, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Speech understanding of nonnative language learners' speech is a challenging problem. In this paper, we investigate the use of dialogue context cues to help improve concept error rate (CER) of nonnative speech in a language learning system. Given that the student's task is known, we show that incorporating the game scores to help select the best hypothesis improves the CER. We also introduce a novel N-best fusion method to create a single final hypothesis on the meaning level. The experimental results show that the fusion methods can further improve the CER.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2012.6289037