MMSE denoising of sparse Lévy processes via message passing

Many recent algorithms for sparse signal recovery can be interpreted as maximum-a-posteriori (MAP) estimators relying on some specific priors. From this Bayesian perspective, state-of-the-art methods based on discrete-gradient regularizers, such as total-variation (TV) minimization, implicitly assum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kamilov, U., Amini, A., Unser, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many recent algorithms for sparse signal recovery can be interpreted as maximum-a-posteriori (MAP) estimators relying on some specific priors. From this Bayesian perspective, state-of-the-art methods based on discrete-gradient regularizers, such as total-variation (TV) minimization, implicitly assume the signals to be sampled instances of Lévy processes with independent Laplace-distributed increments. By extending the concept to more general Lévy processes, we propose an efficient minimum-mean-squared error (MMSE) estimation method based on message-passing algorithms on factor graphs. The resulting algorithm can be used to benchmark the performance of the existing or design new algorithms for the recovery of sparse signals.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2012.6288704