Optimally weighted music algorithm for frequency estimation of real harmonic sinusoids
In this paper, the problem of fundamental frequency estimation for real harmonic sinusoids is addressed. By making use of the subspace technique and Markov-based eigenanalysis, an optimally weighted harmonic multiple signal classification (OW-HMUSIC) estimator is devised. The fundamental frequency e...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3540 |
---|---|
container_issue | |
container_start_page | 3537 |
container_title | |
container_volume | |
creator | Zhenhua Zhou So, H. C. Chan, F. K. W. |
description | In this paper, the problem of fundamental frequency estimation for real harmonic sinusoids is addressed. By making use of the subspace technique and Markov-based eigenanalysis, an optimally weighted harmonic multiple signal classification (OW-HMUSIC) estimator is devised. The fundamental frequency estimates are computed in an iterative manner. The performance of the proposed method is derived. Computer simulations are performed to compare the proposed approach with nonlinear least squares and HMUSIC methods as well as Cramér-Rao lower bound. |
doi_str_mv | 10.1109/ICASSP.2012.6288680 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6288680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6288680</ieee_id><sourcerecordid>6288680</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-5dde1fd55b1da9c05e304cc204429a675cca69c36bad54f25ec2733fbd59d7f13</originalsourceid><addsrcrecordid>eNo1kEtLAzEUheMLrLW_oJv8gak3z5kspfiCQoWquCtpctNG5lGTKdJ_74h6Nmdx-A73HkKmDGaMgbl5mt-uVs8zDozPNK8qXcEJmZiyYlKXAkBqc0pGXJSmYAbez8jVf6DkORkxxaHQTJpLMsn5AwYNKAg9Im_LfR8bW9dH-oVxu-vR0-aQo6O23nYp9ruGhi7RkPDzgK07Usw_QB-7lnaBJrQ13dnUdO3A5Ngechd9viYXwdYZJ38-Jq_3dy_zx2KxfBieWRSRc-gL5T2y4JXaMG-NA4UCpHMcpOTG6lI5Z7VxQm-sVzJwhY6XQoSNV8aXgYkxmf72RkRc79NwWTqu_yYS3weVWLg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimally weighted music algorithm for frequency estimation of real harmonic sinusoids</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhenhua Zhou ; So, H. C. ; Chan, F. K. W.</creator><creatorcontrib>Zhenhua Zhou ; So, H. C. ; Chan, F. K. W.</creatorcontrib><description>In this paper, the problem of fundamental frequency estimation for real harmonic sinusoids is addressed. By making use of the subspace technique and Markov-based eigenanalysis, an optimally weighted harmonic multiple signal classification (OW-HMUSIC) estimator is devised. The fundamental frequency estimates are computed in an iterative manner. The performance of the proposed method is derived. Computer simulations are performed to compare the proposed approach with nonlinear least squares and HMUSIC methods as well as Cramér-Rao lower bound.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6288680</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Covariance matrix ; Estimation ; Frequency estimation ; Fundamental frequency estimation ; Harmonic analysis ; harmonic signal ; Markov optimum weighting ; multi-pitch ; Signal to noise ratio ; subspace method</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.3537-3540</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6288680$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6288680$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhenhua Zhou</creatorcontrib><creatorcontrib>So, H. C.</creatorcontrib><creatorcontrib>Chan, F. K. W.</creatorcontrib><title>Optimally weighted music algorithm for frequency estimation of real harmonic sinusoids</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>In this paper, the problem of fundamental frequency estimation for real harmonic sinusoids is addressed. By making use of the subspace technique and Markov-based eigenanalysis, an optimally weighted harmonic multiple signal classification (OW-HMUSIC) estimator is devised. The fundamental frequency estimates are computed in an iterative manner. The performance of the proposed method is derived. Computer simulations are performed to compare the proposed approach with nonlinear least squares and HMUSIC methods as well as Cramér-Rao lower bound.</description><subject>Accuracy</subject><subject>Covariance matrix</subject><subject>Estimation</subject><subject>Frequency estimation</subject><subject>Fundamental frequency estimation</subject><subject>Harmonic analysis</subject><subject>harmonic signal</subject><subject>Markov optimum weighting</subject><subject>multi-pitch</subject><subject>Signal to noise ratio</subject><subject>subspace method</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kEtLAzEUheMLrLW_oJv8gak3z5kspfiCQoWquCtpctNG5lGTKdJ_74h6Nmdx-A73HkKmDGaMgbl5mt-uVs8zDozPNK8qXcEJmZiyYlKXAkBqc0pGXJSmYAbez8jVf6DkORkxxaHQTJpLMsn5AwYNKAg9Im_LfR8bW9dH-oVxu-vR0-aQo6O23nYp9ruGhi7RkPDzgK07Usw_QB-7lnaBJrQ13dnUdO3A5Ngechd9viYXwdYZJ38-Jq_3dy_zx2KxfBieWRSRc-gL5T2y4JXaMG-NA4UCpHMcpOTG6lI5Z7VxQm-sVzJwhY6XQoSNV8aXgYkxmf72RkRc79NwWTqu_yYS3weVWLg</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Zhenhua Zhou</creator><creator>So, H. C.</creator><creator>Chan, F. K. W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>Optimally weighted music algorithm for frequency estimation of real harmonic sinusoids</title><author>Zhenhua Zhou ; So, H. C. ; Chan, F. K. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-5dde1fd55b1da9c05e304cc204429a675cca69c36bad54f25ec2733fbd59d7f13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Covariance matrix</topic><topic>Estimation</topic><topic>Frequency estimation</topic><topic>Fundamental frequency estimation</topic><topic>Harmonic analysis</topic><topic>harmonic signal</topic><topic>Markov optimum weighting</topic><topic>multi-pitch</topic><topic>Signal to noise ratio</topic><topic>subspace method</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhenhua Zhou</creatorcontrib><creatorcontrib>So, H. C.</creatorcontrib><creatorcontrib>Chan, F. K. W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhenhua Zhou</au><au>So, H. C.</au><au>Chan, F. K. W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimally weighted music algorithm for frequency estimation of real harmonic sinusoids</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>3537</spage><epage>3540</epage><pages>3537-3540</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>In this paper, the problem of fundamental frequency estimation for real harmonic sinusoids is addressed. By making use of the subspace technique and Markov-based eigenanalysis, an optimally weighted harmonic multiple signal classification (OW-HMUSIC) estimator is devised. The fundamental frequency estimates are computed in an iterative manner. The performance of the proposed method is derived. Computer simulations are performed to compare the proposed approach with nonlinear least squares and HMUSIC methods as well as Cramér-Rao lower bound.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6288680</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.3537-3540 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_6288680 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Covariance matrix Estimation Frequency estimation Fundamental frequency estimation Harmonic analysis harmonic signal Markov optimum weighting multi-pitch Signal to noise ratio subspace method |
title | Optimally weighted music algorithm for frequency estimation of real harmonic sinusoids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimally%20weighted%20music%20algorithm%20for%20frequency%20estimation%20of%20real%20harmonic%20sinusoids&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Zhenhua%20Zhou&rft.date=2012-01-01&rft.spage=3537&rft.epage=3540&rft.pages=3537-3540&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6288680&rft_dat=%3Cieee_6IE%3E6288680%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6288680&rfr_iscdi=true |