Optimally weighted music algorithm for frequency estimation of real harmonic sinusoids

In this paper, the problem of fundamental frequency estimation for real harmonic sinusoids is addressed. By making use of the subspace technique and Markov-based eigenanalysis, an optimally weighted harmonic multiple signal classification (OW-HMUSIC) estimator is devised. The fundamental frequency e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhenhua Zhou, So, H. C., Chan, F. K. W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3540
container_issue
container_start_page 3537
container_title
container_volume
creator Zhenhua Zhou
So, H. C.
Chan, F. K. W.
description In this paper, the problem of fundamental frequency estimation for real harmonic sinusoids is addressed. By making use of the subspace technique and Markov-based eigenanalysis, an optimally weighted harmonic multiple signal classification (OW-HMUSIC) estimator is devised. The fundamental frequency estimates are computed in an iterative manner. The performance of the proposed method is derived. Computer simulations are performed to compare the proposed approach with nonlinear least squares and HMUSIC methods as well as Cramér-Rao lower bound.
doi_str_mv 10.1109/ICASSP.2012.6288680
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6288680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6288680</ieee_id><sourcerecordid>6288680</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-5dde1fd55b1da9c05e304cc204429a675cca69c36bad54f25ec2733fbd59d7f13</originalsourceid><addsrcrecordid>eNo1kEtLAzEUheMLrLW_oJv8gak3z5kspfiCQoWquCtpctNG5lGTKdJ_74h6Nmdx-A73HkKmDGaMgbl5mt-uVs8zDozPNK8qXcEJmZiyYlKXAkBqc0pGXJSmYAbez8jVf6DkORkxxaHQTJpLMsn5AwYNKAg9Im_LfR8bW9dH-oVxu-vR0-aQo6O23nYp9ruGhi7RkPDzgK07Usw_QB-7lnaBJrQ13dnUdO3A5Ngechd9viYXwdYZJ38-Jq_3dy_zx2KxfBieWRSRc-gL5T2y4JXaMG-NA4UCpHMcpOTG6lI5Z7VxQm-sVzJwhY6XQoSNV8aXgYkxmf72RkRc79NwWTqu_yYS3weVWLg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimally weighted music algorithm for frequency estimation of real harmonic sinusoids</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhenhua Zhou ; So, H. C. ; Chan, F. K. W.</creator><creatorcontrib>Zhenhua Zhou ; So, H. C. ; Chan, F. K. W.</creatorcontrib><description>In this paper, the problem of fundamental frequency estimation for real harmonic sinusoids is addressed. By making use of the subspace technique and Markov-based eigenanalysis, an optimally weighted harmonic multiple signal classification (OW-HMUSIC) estimator is devised. The fundamental frequency estimates are computed in an iterative manner. The performance of the proposed method is derived. Computer simulations are performed to compare the proposed approach with nonlinear least squares and HMUSIC methods as well as Cramér-Rao lower bound.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6288680</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Covariance matrix ; Estimation ; Frequency estimation ; Fundamental frequency estimation ; Harmonic analysis ; harmonic signal ; Markov optimum weighting ; multi-pitch ; Signal to noise ratio ; subspace method</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.3537-3540</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6288680$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6288680$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhenhua Zhou</creatorcontrib><creatorcontrib>So, H. C.</creatorcontrib><creatorcontrib>Chan, F. K. W.</creatorcontrib><title>Optimally weighted music algorithm for frequency estimation of real harmonic sinusoids</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>In this paper, the problem of fundamental frequency estimation for real harmonic sinusoids is addressed. By making use of the subspace technique and Markov-based eigenanalysis, an optimally weighted harmonic multiple signal classification (OW-HMUSIC) estimator is devised. The fundamental frequency estimates are computed in an iterative manner. The performance of the proposed method is derived. Computer simulations are performed to compare the proposed approach with nonlinear least squares and HMUSIC methods as well as Cramér-Rao lower bound.</description><subject>Accuracy</subject><subject>Covariance matrix</subject><subject>Estimation</subject><subject>Frequency estimation</subject><subject>Fundamental frequency estimation</subject><subject>Harmonic analysis</subject><subject>harmonic signal</subject><subject>Markov optimum weighting</subject><subject>multi-pitch</subject><subject>Signal to noise ratio</subject><subject>subspace method</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kEtLAzEUheMLrLW_oJv8gak3z5kspfiCQoWquCtpctNG5lGTKdJ_74h6Nmdx-A73HkKmDGaMgbl5mt-uVs8zDozPNK8qXcEJmZiyYlKXAkBqc0pGXJSmYAbez8jVf6DkORkxxaHQTJpLMsn5AwYNKAg9Im_LfR8bW9dH-oVxu-vR0-aQo6O23nYp9ruGhi7RkPDzgK07Usw_QB-7lnaBJrQ13dnUdO3A5Ngechd9viYXwdYZJ38-Jq_3dy_zx2KxfBieWRSRc-gL5T2y4JXaMG-NA4UCpHMcpOTG6lI5Z7VxQm-sVzJwhY6XQoSNV8aXgYkxmf72RkRc79NwWTqu_yYS3weVWLg</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Zhenhua Zhou</creator><creator>So, H. C.</creator><creator>Chan, F. K. W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>Optimally weighted music algorithm for frequency estimation of real harmonic sinusoids</title><author>Zhenhua Zhou ; So, H. C. ; Chan, F. K. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-5dde1fd55b1da9c05e304cc204429a675cca69c36bad54f25ec2733fbd59d7f13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Covariance matrix</topic><topic>Estimation</topic><topic>Frequency estimation</topic><topic>Fundamental frequency estimation</topic><topic>Harmonic analysis</topic><topic>harmonic signal</topic><topic>Markov optimum weighting</topic><topic>multi-pitch</topic><topic>Signal to noise ratio</topic><topic>subspace method</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhenhua Zhou</creatorcontrib><creatorcontrib>So, H. C.</creatorcontrib><creatorcontrib>Chan, F. K. W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhenhua Zhou</au><au>So, H. C.</au><au>Chan, F. K. W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimally weighted music algorithm for frequency estimation of real harmonic sinusoids</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>3537</spage><epage>3540</epage><pages>3537-3540</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>In this paper, the problem of fundamental frequency estimation for real harmonic sinusoids is addressed. By making use of the subspace technique and Markov-based eigenanalysis, an optimally weighted harmonic multiple signal classification (OW-HMUSIC) estimator is devised. The fundamental frequency estimates are computed in an iterative manner. The performance of the proposed method is derived. Computer simulations are performed to compare the proposed approach with nonlinear least squares and HMUSIC methods as well as Cramér-Rao lower bound.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6288680</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.3537-3540
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_6288680
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Covariance matrix
Estimation
Frequency estimation
Fundamental frequency estimation
Harmonic analysis
harmonic signal
Markov optimum weighting
multi-pitch
Signal to noise ratio
subspace method
title Optimally weighted music algorithm for frequency estimation of real harmonic sinusoids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimally%20weighted%20music%20algorithm%20for%20frequency%20estimation%20of%20real%20harmonic%20sinusoids&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Zhenhua%20Zhou&rft.date=2012-01-01&rft.spage=3537&rft.epage=3540&rft.pages=3537-3540&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6288680&rft_dat=%3Cieee_6IE%3E6288680%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6288680&rfr_iscdi=true