Optimally weighted music algorithm for frequency estimation of real harmonic sinusoids

In this paper, the problem of fundamental frequency estimation for real harmonic sinusoids is addressed. By making use of the subspace technique and Markov-based eigenanalysis, an optimally weighted harmonic multiple signal classification (OW-HMUSIC) estimator is devised. The fundamental frequency e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhenhua Zhou, So, H. C., Chan, F. K. W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the problem of fundamental frequency estimation for real harmonic sinusoids is addressed. By making use of the subspace technique and Markov-based eigenanalysis, an optimally weighted harmonic multiple signal classification (OW-HMUSIC) estimator is devised. The fundamental frequency estimates are computed in an iterative manner. The performance of the proposed method is derived. Computer simulations are performed to compare the proposed approach with nonlinear least squares and HMUSIC methods as well as Cramér-Rao lower bound.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2012.6288680