Rotation invariant simultaneous clustering and dictionary learning

In this paper, we present an approach that simultaneously clusters database members and learns dictionaries from the clusters. The method learns dictionaries in the Radon transform domain, while clustering in the image domain. Themain feature of the proposed approach is that it provides rotation inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yi-Chen Chen, Sastry, C. S., Patel, V. M., Phillips, P. J., Chellappa, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present an approach that simultaneously clusters database members and learns dictionaries from the clusters. The method learns dictionaries in the Radon transform domain, while clustering in the image domain. Themain feature of the proposed approach is that it provides rotation invariant clustering which is useful in Content Based Image Retrieval (CBIR). We demonstrate through experimental results that the proposed rotation invariant clustering provides better retrieval performance than the standard Gabor-based method that has similar objectives.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2012.6288067