Recursive Identification of MIMO Wiener Systems
Stochastic approximation (SA) algorithms are proposed to identify a multi-input and multi-output (MIMO) Wiener system, in which the system input is taken to be a sequence of independent and identically distributed (i.i.d.) Gaussian random vectors uk ∈ N (0, I ). The algorithm for identifying the non...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2013-03, Vol.58 (3), p.802-808 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stochastic approximation (SA) algorithms are proposed to identify a multi-input and multi-output (MIMO) Wiener system, in which the system input is taken to be a sequence of independent and identically distributed (i.i.d.) Gaussian random vectors uk ∈ N (0, I ). The algorithm for identifying the nonlinear part is designed with multi-variable kernel functions. Under suitable conditions, we show that the estimates of the coefficients of the linear subsystem and of the values of the nonlinear function converge to the respective true values with probability one. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2012.2215539 |