Anomaly detection in spatiotemporal data in the maritime domain

Maritime security is critical for many nations to address the vulnerability of their sea lanes, ports and harbours to a variety of threats and illegal activities. With increasing volume of spatiotemporal data, it is ever more problematic to analyze the enormous volume of data in real time. This pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Avram, Vladimir, Glasser, Uwe, Shahir, Hamed Yaghoubi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maritime security is critical for many nations to address the vulnerability of their sea lanes, ports and harbours to a variety of threats and illegal activities. With increasing volume of spatiotemporal data, it is ever more problematic to analyze the enormous volume of data in real time. This paper explores a novel approach to representing spatiotemporal data for model-driven methods for detecting patterns of anomalous behaviour in spatiotemporal datasets.
DOI:10.1109/ISI.2012.6284274