Anomaly detection in spatiotemporal data in the maritime domain
Maritime security is critical for many nations to address the vulnerability of their sea lanes, ports and harbours to a variety of threats and illegal activities. With increasing volume of spatiotemporal data, it is ever more problematic to analyze the enormous volume of data in real time. This pape...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Maritime security is critical for many nations to address the vulnerability of their sea lanes, ports and harbours to a variety of threats and illegal activities. With increasing volume of spatiotemporal data, it is ever more problematic to analyze the enormous volume of data in real time. This paper explores a novel approach to representing spatiotemporal data for model-driven methods for detecting patterns of anomalous behaviour in spatiotemporal datasets. |
---|---|
DOI: | 10.1109/ISI.2012.6284274 |