Feedforward control (based on model inversion) and system performance prediction using high-fidelity nonlinear dynamic hydraulic system modeling
This paper describes a powerful new technique for using high fidelity dynamic models to predict system performance of a high-energy hydraulically-actuated shock test system. The same models are then used to formulate an advanced feedforward controller for the system. Not only does the technique supp...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes a powerful new technique for using high fidelity dynamic models to predict system performance of a high-energy hydraulically-actuated shock test system. The same models are then used to formulate an advanced feedforward controller for the system. Not only does the technique support system development, performance prediction, and feedforward control, but it enables some aspects of virtual testing by precisely predicting forces to be applied to a test specimen. The data presented show that the system simulation was able to predict system performance very well, and that the feedforward control system has demonstrated its ability to meet its performance objectives. |
---|---|
DOI: | 10.1109/CCA.1997.627468 |