Artificial Immune System-based Classification in Class-Imbalanced Image Classification Problems

In this paper, we compare the performance of Artificial Immune System (AIS)-based classification algorithms to the performance of Gaussian kernel-based Support Vector Machines (SVM) in problems with a high degree of class imbalance. Our experimentation indicates that the AIS-based classification par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sotiropoulos, D. N., Tsihrintzis, G. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we compare the performance of Artificial Immune System (AIS)-based classification algorithms to the performance of Gaussian kernel-based Support Vector Machines (SVM) in problems with a high degree of class imbalance. Our experimentation indicates that the AIS-based classification paradigm has the intrinsic properly of dealing more efficiently with highly skewed datasets. Specifically, our experimental results indicate that AIS-based classifiers identify instances from the minority class quite efficiently.
DOI:10.1109/IIH-MSP.2012.39