Static and dynamic memory to simulate higher-order cognitive tasks

The foremost objective of our research series is to construct a neurocomputational model that aims to achieve a Large-Scale Brain Network, and to suggest a possible insight of how the macro-level anatomical structures, such as the connectivity between the frontal lobe regions and their dynamic prope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alnajjar, F. S., Yamashita, Y., Tani, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The foremost objective of our research series is to construct a neurocomputational model that aims to achieve a Large-Scale Brain Network, and to suggest a possible insight of how the macro-level anatomical structures, such as the connectivity between the frontal lobe regions and their dynamic properties, can be self-organized to obtain the higher-order cognitive mechanisms, such as: planning, reasoning, task switching, cognitive branching, etc. For addressing these issues, this paper, in particular, focuses in proposing a model that intends to clarify the neural structure and mechanisms underlying the task switching and the cognitive branching condition. Although both tasks requiring varying degree of a working memory, in contrast to the switching task, where the primary ongoing task is entirely replaced by a new task, in the branching task, a delaying to the execution of an original task occurs until the completion of a subordinate task. The proposed model is constructed by a hierarchical Multiple Timescale Recurrent Neural Network (MTRNN) and conducted on a humanoid robot in a physical environment. Experimental results suggest essential factors related to the neural activities and network's structure necessary to form a suitable working memory for accomplishing such tasks.
ISSN:2161-4393
2161-4407
DOI:10.1109/IJCNN.2012.6252749