Face detection, pose estimation, and landmark localization in the wild
We present a unified model for face detection, pose estimation, and landmark estimation in real-world, cluttered images. Our model is based on a mixtures of trees with a shared pool of parts; we model every facial landmark as a part and use global mixtures to capture topological changes due to viewp...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a unified model for face detection, pose estimation, and landmark estimation in real-world, cluttered images. Our model is based on a mixtures of trees with a shared pool of parts; we model every facial landmark as a part and use global mixtures to capture topological changes due to viewpoint. We show that tree-structured models are surprisingly effective at capturing global elastic deformation, while being easy to optimize unlike dense graph structures. We present extensive results on standard face benchmarks, as well as a new "in the wild" annotated dataset, that suggests our system advances the state-of-the-art, sometimes considerably, for all three tasks. Though our model is modestly trained with hundreds of faces, it compares favorably to commercial systems trained with billions of examples (such as Google Picasa and face.com). |
---|---|
ISSN: | 1063-6919 |
DOI: | 10.1109/CVPR.2012.6248014 |