Semantic structure from motion with points, regions, and objects

Structure from motion (SFM) aims at jointly recovering the structure of a scene as a collection of 3D points and estimating the camera poses from a number of input images. In this paper we generalize this concept: not only do we want to recover 3D points, but also recognize and estimate the location...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bao, Sid Yingze, Bagra, M., Yu-Wei Chao, Savarese, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structure from motion (SFM) aims at jointly recovering the structure of a scene as a collection of 3D points and estimating the camera poses from a number of input images. In this paper we generalize this concept: not only do we want to recover 3D points, but also recognize and estimate the location of high level semantic scene components such as regions and objects in 3D. As a key ingredient for this joint inference problem, we seek to model various types of interactions between scene components. Such interactions help regularize our solution and obtain more accurate results than solving these problems in isolation. Experiments on public datasets demonstrate that: 1) our framework estimates camera poses more robustly than SFM algorithms that use points only; 2) our framework is capable of accurately estimating pose and location of objects, regions, and points in the 3D scene; 3) our framework recognizes objects and regions more accurately than state-of-the-art single image recognition methods.
ISSN:1063-6919
DOI:10.1109/CVPR.2012.6247992