Non-negative low rank and sparse graph for semi-supervised learning

Constructing a good graph to represent data structures is critical for many important machine learning tasks such as clustering and classification. This paper proposes a novel non-negative low-rank and sparse (NNLRS) graph for semi-supervised learning. The weights of edges in the graph are obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liansheng Zhuang, Haoyuan Gao, Zhouchen Lin, Yi Ma, Xin Zhang, Nenghai Yu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Constructing a good graph to represent data structures is critical for many important machine learning tasks such as clustering and classification. This paper proposes a novel non-negative low-rank and sparse (NNLRS) graph for semi-supervised learning. The weights of edges in the graph are obtained by seeking a nonnegative low-rank and sparse matrix that represents each data sample as a linear combination of others. The so-obtained NNLRS-graph can capture both the global mixture of subspaces structure (by the low rankness) and the locally linear structure (by the sparseness) of the data, hence is both generative and discriminative. We demonstrate the effectiveness of NNLRS-graph in semi-supervised classification and discriminative analysis. Extensive experiments testify to the significant advantages of NNLRS-graph over graphs obtained through conventional means.
ISSN:1063-6919
DOI:10.1109/CVPR.2012.6247944