Enhancing AQM to combat wireless losses

In order to maintain a small, stable backlog at the router buffer, active queue management (AQM) algorithms drop packets probabilistically at the onset of congestion, leading to backoffs by Transmission Control Protocol (TCP) flows. However, wireless losses may be misinterpreted as congestive losses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chengdi Lai, Ka-Cheong Leung, Li, V. O. K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to maintain a small, stable backlog at the router buffer, active queue management (AQM) algorithms drop packets probabilistically at the onset of congestion, leading to backoffs by Transmission Control Protocol (TCP) flows. However, wireless losses may be misinterpreted as congestive losses and induce spurious backoffs. In this paper, we raise the basic question: Can AQM maintain a stable, small backlog under wireless losses? We find that the representative AQM, random early detection (RED), fails to maintain a stable backlog under time-varying wireless losses. We find that the key to resolving the problem is to robustly track the backlog to a preset reference level, and apply the control-theoretic vehicle, internal model principle, to realize such tracking. We further devise the integral controller (IC) as an embodiment of the principle. Our simulation results show that IC is robust against time-varying wireless losses under various network scenarios.
ISSN:1548-615X
DOI:10.1109/IWQoS.2012.6245989