One-Bit Measurements With Adaptive Thresholds

We introduce a new method for adaptive one-bit quantization of linear measurements and propose an algorithm for the recovery of signals based on generalized approximate message passing (GAMP). Our method exploits the prior statistical information on the signal for estimating the minimum-mean-squared...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2012-10, Vol.19 (10), p.607-610
Hauptverfasser: Kamilov, U. S., Bourquard, A., Amini, A., Unser, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new method for adaptive one-bit quantization of linear measurements and propose an algorithm for the recovery of signals based on generalized approximate message passing (GAMP). Our method exploits the prior statistical information on the signal for estimating the minimum-mean-squared error solution from one-bit measurements. Our approach allows the one-bit quantizer to use thresholds on the real line. Given the previous measurements, each new threshold is selected so as to partition the consistent region along its centroid computed by GAMP. We demonstrate that the proposed adaptive-quantization scheme with GAMP reconstruction greatly improves the performance of signal and image recovery from one-bit measurements.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2012.2209640