A real-time 32.768-kHz clock oscillator using a 0.0154-mm2 micromechanical resonator frequency-setting element
A capacitive-comb transduced micromechanical resonator using aggressive lithography to occupy only 0.0154-mm 2 of die area has been combined via bond-wiring with a custom ASIC sustaining amplifier and a supply voltage of only 1.65V to realize a 32.768-kHz real-time clock oscillator more than 100× sm...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A capacitive-comb transduced micromechanical resonator using aggressive lithography to occupy only 0.0154-mm 2 of die area has been combined via bond-wiring with a custom ASIC sustaining amplifier and a supply voltage of only 1.65V to realize a 32.768-kHz real-time clock oscillator more than 100× smaller by area than miniaturized quartz crystal implementations and at least 4× smaller than other MEMS-based approaches, including those using piezoelectric material. The key to achieving such large reductions in size is the enormous rate at which scaling improves the performance of capacitive-comb transduced folded-beam micromechanical resonators, for which scaling of lateral dimensions by a factor S provides an S 2 × reduction in both motional resistance and footprint for a given resonance frequency. This is a very strong dependency that raises eyebrows, since the size of the frequency-setting tank element may soon become the most important attribute governing cost in a potential MEMS-based or otherwise batch-fabricated 32.768-kHz timing oscillator market. In addition, unlike quartz counterparts, the size reduction demonstrated here actually reduces power consumption, allowing this oscillator to operate with only 2.1μW of DC power. |
---|---|
ISSN: | 2327-1914 |
DOI: | 10.1109/FCS.2012.6243740 |