3D outline contours of vehicles in 3D-LIDAR-measurements for tracking extended targets
Tracking of extended targets in high definition 360 degree 3D-LIDAR (Light Detection and Ranging) measurements is a challenging task. It is a key component in robotic applications and is relevant to collision avoidance and autonomous driving. This paper presents a robust method to determine the 3D o...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tracking of extended targets in high definition 360 degree 3D-LIDAR (Light Detection and Ranging) measurements is a challenging task. It is a key component in robotic applications and is relevant to collision avoidance and autonomous driving. This paper presents a robust method to determine the 3D outline contour of vehicles in disordered 3D-LIDAR measurements while using several geometrical vehicle-specific constraints. In addition, the 3D outline contour contains information on the local reliability of the contour. A weighted registration approach allows calculating the velocity of consecutive 3D outline contours directly. The approach is tested with real sensor data. A robot car equipped with an inertial measurement unit serves as ground truth. |
---|---|
ISSN: | 1931-0587 2642-7214 |
DOI: | 10.1109/IVS.2012.6232179 |