A multilayered superconducting neural network implementation

We present the results of numerical simulations of a novel neural networking implementation utilizing multilayered Josephson junction (or series array) based synaptic circuits with local memory. These synaptic circuits utilize single flux quanta for both neural information and synaptic weight progra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 1997-06, Vol.7 (2), p.3442-3445
Hauptverfasser: Rippert, E.D., Lomatch, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the results of numerical simulations of a novel neural networking implementation utilizing multilayered Josephson junction (or series array) based synaptic circuits with local memory. These synaptic circuits utilize single flux quanta for both neural information and synaptic weight programming, and we present a simple circuit that can implement Hebbian learning at a completely local level, with global control over the rates of both learning and forgetting in synapses.
ISSN:1051-8223
1558-2515
DOI:10.1109/77.622126