Combining different modes of high-power ion beam application for creation of metallic and diamond-like coatings
Some results of the experiments on thin film deposition using pulsed high-power ion beam (HPIB) are reported. Ti, Nb, Pt, and C films were produced from ablation plasma generated under the action of pulsed HPIB on a surface of ablated materials. We are developing the combined technology that deals w...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Some results of the experiments on thin film deposition using pulsed high-power ion beam (HPIB) are reported. Ti, Nb, Pt, and C films were produced from ablation plasma generated under the action of pulsed HPIB on a surface of ablated materials. We are developing the combined technology that deals with cleaning a substrate surface by HPIB, thin film deposition by HPIB, and the radiation-induced mass transfer of elements of both film and substrate to increase the adhesion. The deposition of the diamond-like titanium carbide has been realized on the basis of the scheme including Ti film deposition, C film deposition, and the ion beam mixing to form TiC carbide. The main parameters of the Ti-substrate transition layers have been determined for different regimes of their creation by Rutherford backscattering (RBS). Ti, Nb, and Pt coatings were deposited on silicon cantilevers used in high-resolution scanning probe microscopes. The analysis of the composition of TiC coatings at a substrate was performed using the Auger electron spectroscopy (AES) method. |
---|---|
DOI: | 10.1063/1.1530887 |