Bandwidth and energy savings of locality-aware P2P Content Distribution in next-generation PONs
Content Distribution currently accounts for the vast majority of Internet traffic. Peer-to-Peer represents a scalable and inexpensive strategy to deliver content to end-customers; unfortunately, it poses a sever strain on the network core and generates high costs for service providers. Locality-awar...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Content Distribution currently accounts for the vast majority of Internet traffic. Peer-to-Peer represents a scalable and inexpensive strategy to deliver content to end-customers; unfortunately, it poses a sever strain on the network core and generates high costs for service providers. Locality-aware policies have been proposed to tackle these issues, but their effectiveness is limited by the low probability of finding enough peers with the required content. In this work we evaluate the impact of next-generation optical access networks - and specifically their symmetric bandwidth and customer aggregation features - on the feasibility of locality-aware peer-to-peer content distribution schemes. With the aid of a simulation tool, using parameters taken from real-world traces, we show that core traffic can be greatly reduced with respect to traditional centralized, Content Distribution Network (CDN) or locality-aware asymmetric schemes. Relieving the network from part of this load might allow network operators to reduce the switching electronics required at core and metro nodes, thus lowering capital and operational expenditures. An estimation of the power savings that could be achieved through this process is also presented. |
---|---|
DOI: | 10.1109/ONDM.2012.6210215 |