Reduced-Reference Video Quality Assessment of Compressed Video Sequences
In this paper, a novel reduced-reference (RR) video quality assessment (VQA) is proposed by exploiting the spatial information loss and the temporal statistical characteristics of the interframe histogram. From the spatial perspective, an energy variation descriptor (EVD) is proposed to measure the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2012-10, Vol.22 (10), p.1441-1456 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a novel reduced-reference (RR) video quality assessment (VQA) is proposed by exploiting the spatial information loss and the temporal statistical characteristics of the interframe histogram. From the spatial perspective, an energy variation descriptor (EVD) is proposed to measure the energy change of each individual encoded frame, which results from the quantization process. Besides depicting the energy change, EVD can further simulate the texture masking property of the human visual system (HVS). From the temporal perspective, the generalized Gaussian density (GGD) function is employed to capture the natural statistics of the interframe histogram distribution. The city-block distance (CBD) is used to calculate the histogram distance between the original video sequence and the encoded one. For simplicity, the difference image between adjacent frames is employed to characterize the temporal interframe relationship. By combining the spatial EVD together with the temporal CBD, an efficient RR VQA is developed. Evaluation on the subjective quality video database demonstrates that the proposed method outperforms the representative RR video quality metric and the full-reference VQAs, such as peak signal-to-noise ratio and structure similarity index in matching subjective ratings. This means that the proposed metric is more consistent with the HVS perception. Furthermore, as only a small number of RR features are extracted for representing the original video sequence (each frame requires only one parameter for describing EVD and three parameters for recording GGD), the RR features can be embedded into the video sequences or transmitted through the ancillary data channel, which can be used in the video quality monitoring system. |
---|---|
ISSN: | 1051-8215 1558-2205 |
DOI: | 10.1109/TCSVT.2012.2202049 |